Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_4_a6, author = {A. A. Kovalevsky and F. Nicolosi}, title = {On the sets of boundedness of solutions for a~class of degenerate nonlinear elliptic fourth-order equations with $L^1$-data}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {99--112}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a6/} }
TY - JOUR AU - A. A. Kovalevsky AU - F. Nicolosi TI - On the sets of boundedness of solutions for a~class of degenerate nonlinear elliptic fourth-order equations with $L^1$-data JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 99 EP - 112 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a6/ LA - ru ID - FPM_2006_12_4_a6 ER -
%0 Journal Article %A A. A. Kovalevsky %A F. Nicolosi %T On the sets of boundedness of solutions for a~class of degenerate nonlinear elliptic fourth-order equations with $L^1$-data %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 99-112 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a6/ %G ru %F FPM_2006_12_4_a6
A. A. Kovalevsky; F. Nicolosi. On the sets of boundedness of solutions for a~class of degenerate nonlinear elliptic fourth-order equations with $L^1$-data. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 99-112. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a6/
[1] Kovalevskii A. A., “Entropiinye resheniya zadachi Dirikhle dlya odnogo klassa nelineinykh ellipticheskikh uravnenii chetvertogo poryadka s $L^1$-pravymi chastyami”, Izv. RAN. Ser. mat., 65:2 (2001), 27–80 | MR | Zbl
[2] Skrypnik I. V., “Kvazilineinye ellipticheskie uravneniya vysshego poryadka s nepreryvnymi obobschennymi resheniyami”, Differents. uravn., 14 (1978), 786–795 | MR | Zbl
[3] Bénilan Ph., Boccardo L., Gallouët Th., Gariepy R., Pierre M., Vazquez J. L., “An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scu. Norm. Sup. Pisa Cl. Sci., 22 (1995), 241–273 | MR | Zbl
[4] Kovalevsky A., Nicolosi F., “Boundedness of solutions of variational inequalities with nonlinear degenerated elliptic operators of high order”, Appl. Anal., 65 (1997), 225–249 | DOI | MR | Zbl
[5] Kovalevsky A., Nicolosi F., “On Hölder continuity of solutions of equations and variational inequalities with degenerate nonlinear high order operators”, Problemi attuali dell'analisi e della fisica matematica (Atti del $2^0$ Simp. Int. dedicato alla memoria del Prof. Gaetano Fichera), Aracne Editrice, Roma, 2000, 205–220 | MR
[6] Kovalevsky A., Nicolosi F., “Solvability of Dirichlet problem for a class of degenerate nonlinear high-order equations with $L^1$-data”, Nonlinear Anal., Theory Methods Appl., 47 (2001), 435–446 | DOI | MR | Zbl
[7] Kovalevsky A., Nicolosi F., “Entropy solutions of Dirichlet problem for a class of degenerate anisotropic fourth-order equations with $L^1$-right-hand sides”, Nonlinear Anal., Theory Methods Appl., 50 (2002), 581–619 | DOI | MR | Zbl
[8] Kovalevsky A., Nicolosi F., “Existence of solutions of some degenerate nonlinear elliptic fourth-order equations with $L^1$-data”, Appl. Anal., 81 (2002), 905–914 | DOI | MR | Zbl
[9] Lions J. L., Quelques méthods de résolution des problèmes aux limites non linéaires Paris: Dunod, Gauthier-Villars, 1969 | MR
[10] Nicolosi F., Skrypnik I. V., “Nirenberg–Gagliardo interpolation inequality and regularity of solutions of nonlinear higher order equations”, Topol. Methods Nonlinear Anal., 7 (1996), 327–347 | MR | Zbl