Helmholtz--Kirchhoff method and boundary control of a~plane flow
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 65-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the description of the eddy singularities behind an obstruction $S$ flowed around and their dependence (and hence, the dependence of flow functionals, e.g., the resistance force) on parameters determining the boundary $\partial S$ of the obstacle and/or flow characteristics on $\partial S$. We propose a new approach to these problems for a flat potential flow of an incompressible liquid, which is based on ideas of the Helmholtz–Kirchhoff method and the Euler equation $d\vec V/dt=\nabla p$ under the assumption that the flow has a point vortices concentrated at the required centers $z_k^*$, where the potential $u$ of the velocity $\vec V=\overline{dw}/dz$ ($w=u+iv\in\mathbb C$, $z=x+iy$) has a singularity proportional to $\mathrm{arg}(z-z_k^*)$. In the case of a $K$-segment polygonal obstacle and a (chosen in some way) number $L$ of point vortices taken into account in calculations, the flow can be reconstructed by the so-called characteristic values of the potential. It occurs that, being the components of the required vector function $$ \sigma\colon t\mapsto(\sigma_1(t),\ldots,\sigma_M(t))\in\mathbb R^M, \ \ \text{where}\ \ M =M(K,L), $$ they are connected by certain functional equations corresponding to geometric properties of the obstacle, intensity of vortices, frequency of their breakdown from the obstacle, etc. These equations involve the Helmholtz–Kirchhoff function $\ln(dz/dw)$ specified on the $L$-fold Riemannian surface $Q=Q(\sigma)\ni w$. This surface and the boundary conditions for the function $\ln(dz/dw)$ are parameterized by the function $\sigma$ and by a control defined on $\partial S$. As for the pressure $p$, it is defined by the Cauchy–Lagrange equation for the Euler equation.
@article{FPM_2006_12_4_a4,
     author = {A. S. Demidov},
     title = {Helmholtz--Kirchhoff method and boundary control of a~plane flow},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {65--77},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a4/}
}
TY  - JOUR
AU  - A. S. Demidov
TI  - Helmholtz--Kirchhoff method and boundary control of a~plane flow
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 65
EP  - 77
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a4/
LA  - ru
ID  - FPM_2006_12_4_a4
ER  - 
%0 Journal Article
%A A. S. Demidov
%T Helmholtz--Kirchhoff method and boundary control of a~plane flow
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 65-77
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a4/
%G ru
%F FPM_2006_12_4_a4
A. S. Demidov. Helmholtz--Kirchhoff method and boundary control of a~plane flow. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 65-77. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a4/

[1] Badzhadi A., Demidov A. S., “Teoremy suschestvovaniya, nesuschestvovaniya i regulyarnosti v odnoi zadache so svobodnoi granitsei”, Mat. sb., 122 (164):1 (9) (1983), 64–81 | MR | Zbl

[2] Birkgof G., Sarantonello E., Strui, sledy i kaverny, mir, M., 1964 | MR

[3] Gogish L. V., Stepanov G. Yu., Otryvnye i kavitatsionnye techeniya, Nauka, M., 1990

[4] Demidov A. S., “O minimume nepreryvnykh funktsionalov ot proizvodnykh garmonicheskoi funktsii, parametrizovannoi eë iskomoi liniei urovnya i/ili drugimi granichnymi dannymi”, Dinamicheskie sistemy i optimizatsiya, Sovremennaya matematika i eë prilozheniya, 24, VINITI, M., 2005, 35–50 | MR

[5] Lavrentev M. A., Shabat B. V., Problemy gidrodinamiki i ikh matematicheskie modeli, 2-e izd., Nauka, M., 1977 | MR

[6] Yudovich V. I., “Nestatsionarnye techeniya idealnoi neszhimaemoi zhidkosti”, ZhVM i MF, 3 (1963), 1032–1066 | Zbl

[7] Demidov A. S., “Configurations du plasma stationnaire équilibré”, Proc. of a seminar held in Pavia, 1, Roma, 1979, 467–485 | MR

[8] Demidov A. S., “Some applications of the Helmholtz–Kirchhoff method (equilibrium plasma in Tokamaks, Hele–Shaw flow, and high-frequency asymptotics)”, Russian J. Math. Phys., 7:2 (2000), 166–186 | MR | Zbl

[9] Demidov A. S., Petrova V. V., Silantiev V. M., “On inverse and direct free boundary problems in the theory of plasma equilibrium in a Tokamak”, C. R. Acad. Sci. Paris. Sér. I, 323 (1996), 353–358 | MR | Zbl

[10] Dutrifoy A., “Existence globale en temps de solutions hélico\"idales des équations d'Euler”, C. R. Acad. Sci. Paris. Sér. I, 329 (1999), 653–656 | MR | Zbl

[11] Wolibner W., “Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long”, Math. Z., 37:5 (1933), 698–726 | DOI | MR | Zbl