Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_4_a13, author = {E. Schnack and T. Langhoff and S. Dimitrov}, title = {A~Richardson-type iterative approach for identification of delamination boundaries}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {209--230}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a13/} }
TY - JOUR AU - E. Schnack AU - T. Langhoff AU - S. Dimitrov TI - A~Richardson-type iterative approach for identification of delamination boundaries JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 209 EP - 230 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a13/ LA - ru ID - FPM_2006_12_4_a13 ER -
%0 Journal Article %A E. Schnack %A T. Langhoff %A S. Dimitrov %T A~Richardson-type iterative approach for identification of delamination boundaries %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 209-230 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a13/ %G ru %F FPM_2006_12_4_a13
E. Schnack; T. Langhoff; S. Dimitrov. A~Richardson-type iterative approach for identification of delamination boundaries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 209-230. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a13/
[1] Alessandrini G., “Stable determination of a crack from boundary measurements”, Proc. Roy. Soc. Edinburgh Sect. A., 123:3 (1993), 497–516 | MR | Zbl
[2] Alessandrini G., Valenzuela A., “Unique determination of multiple cracks by two measurements”, SIAM J. Control Optim., 34 (1996), 913–921 | DOI | MR | Zbl
[3] Bergh J., Löfström L., Interpolation Spaces. An introduction., Grundlehren Math. Wiss. Vol. 223, Springer, Berlin, 1976 | MR | Zbl
[4] Brenner S., Scott L., The Mathematical Theory of Finite Element Methods, Texts Appl. Math. Vol. 20, Springer, Berlin, 2002 | MR
[5] Bryan K., Vogelius M., “A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements”, SIAM J. Math. Anal., 23 (1992), 950–958 | DOI | MR | Zbl
[6] Bryan K., Vogelius M., “A computational algorithm to determine crack location from electrostatic boundary measurements. The case of multiple cracks”, Internat. J. Engrg. Sci., 32:4 (1994), 579–604 | DOI | MR
[7] Ciarlet P., Mathematical Elasticity, Stud. Math. Its Appl. Vol. 20 I: Three-dimensional elasticity, North-Holland, Amsterdam, 1988 | MR | Zbl
[8] Duvaut D., Lions J., Les inequations en mechanique et en physique, Dunod, Paris, 1972 | MR | Zbl
[9] Elcrat A., Isakov V., Neculoiu O., “On finding a surface crack from boundary measurements”, Inverse Problems, 11 (1995), 343–351 | DOI | MR | Zbl
[10] Friedman A., Vogelius M., “Determining cracks by boundary measurements”, Indiana Univ. Math. J., 38 (1989), 527–556 | DOI | MR | Zbl
[11] Grisvard P., Singularities in Boundary Value Problemes, Masson, Paris ; Berlin; Recherches en Mathématiques appliquées Vol. 22, Springer, 1992 | MR | Zbl
[12] Kozlov V., Mazya V., Fomin A., “An iterative method for solving the Cauchy problem for elliptic equations”, Comput. Math. Math. Phys., 31:1 (1991), 4552 | MR
[13] Kubo S., “Requirements for uniqueness of crack identification from potential distributions”, Inverse Problems in Engineering Sciences (Proceedings of a Conf. Held in Osaka, Japan August 19–20, 1990), ed. M. Yamaguti et al., Springer, Tokyo, 1991, 52–58
[14] Kubo S., “Crack identification from electric potential distributions and its uniqueness”, Modelling, Computation and Analysis in Fracture Mechanics (Proc. of a Seminar Held at Ube City, Yamaguchi, Japan in July, 1993), Lect. Notes Numer. Appl. Anal., 13, eds. Y. Fujitani et al., Kinokuniya, Tokyo, 1994, 189 | MR | Zbl
[15] Marsden J., Hughes T., Mathematical Foundations of Elasticity, Prentice Hall, 1983 | Zbl
[16] Petree J., “Espaces d'interpolation, generalisations, applications”, Rend. Sem. Mat. Fis. Milano, 34 (1964), 133–164 | DOI | MR
[17] Petree J., “On the theory of interpolation spaces”, Rev. Un. Mat. Argentina, 23 (19), 49–66 | MR
[18] Petree J., “Approximations of norms”, J. Approx. Theory, 3 (1970), 243–260 | DOI
[19] Petree J., “On interpolation functions”, Acta Sci. Math., 30 (1970), 235–239
[20] Petree J., “A new approach in interpolation spaces”, Studia Math., 34 (1970), 23–42 | MR
[21] Riesz F., Nagy B. Sz., Functional Analysis, Dover Books on Adv. Math., Dover, 1990 | MR | Zbl
[22] Santosa F., Vogelius M., “A computational algorithm to determine cracks from electrostatic boundary measurements”, Internat. J. Engrg. Sci., 29 (1991), 917937 | DOI
[23] Stakgold I., Greens Functions and Boundary Value Problems, Wiley, 1979 | MR | Zbl
[24] Weikl W., Andrae H., Schnack E., “An alternating iterative algorithm for the reconstruction of internal cracks in a three-dimensional solid body”, Inverse Problems, 17:6 (2001), 195 | DOI | MR
[25] Yosida K., Functional Analysis, Springer, Berlin, 1994 | Zbl