A~Richardson-type iterative approach for identification of delamination boundaries
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 209-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

A direct problem of particular mathematical modelling is to determine the response of a system, given the governing partial differential equations, the geometry under interest, the complete boundary and initial conditions, and material properties. When one or more of the conditions for the solution of the direct problem are unknown, an inverse problem can be formulated. One of the methods frequently used for the solution of inverse problems involves finding the values of the unknowns in a mathematical formulation such that the behavior calculated with the model matches the measured response at degree evaluated in terms of the classical $L_2$ norm. Considered in this sense, the inverse problem is equivalent to an ill-posed optimization problem for the estimation of parameters whose solution in predominant part of cases is a real mathematical challenge. In this contribution, we report a novel approach which avoids the mathematical difficulties inspired by ill-posed character of the model. Our method is devoted to the computation of inverse problems furnished by second-order elliptical systems of partial differential equations and falls in the same conceptual line with the method initiated by Kozlov et al. and further extended and algorithmized by Weikl et al. We construct and employ a weak version of the algorithm found by Weikl et al. Proofs for the convergence and regularity of this version are given for the case of a single layer. The computational realization of the algorithm (called briefly AICRA) is applied and numerical results are obtained. The comparison with experiments demonstrates a good significance and representativeness.
@article{FPM_2006_12_4_a13,
     author = {E. Schnack and T. Langhoff and S. Dimitrov},
     title = {A~Richardson-type iterative approach for identification of delamination boundaries},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--230},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a13/}
}
TY  - JOUR
AU  - E. Schnack
AU  - T. Langhoff
AU  - S. Dimitrov
TI  - A~Richardson-type iterative approach for identification of delamination boundaries
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 209
EP  - 230
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a13/
LA  - ru
ID  - FPM_2006_12_4_a13
ER  - 
%0 Journal Article
%A E. Schnack
%A T. Langhoff
%A S. Dimitrov
%T A~Richardson-type iterative approach for identification of delamination boundaries
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 209-230
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a13/
%G ru
%F FPM_2006_12_4_a13
E. Schnack; T. Langhoff; S. Dimitrov. A~Richardson-type iterative approach for identification of delamination boundaries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 209-230. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a13/

[1] Alessandrini G., “Stable determination of a crack from boundary measurements”, Proc. Roy. Soc. Edinburgh Sect. A., 123:3 (1993), 497–516 | MR | Zbl

[2] Alessandrini G., Valenzuela A., “Unique determination of multiple cracks by two measurements”, SIAM J. Control Optim., 34 (1996), 913–921 | DOI | MR | Zbl

[3] Bergh J., Löfström L., Interpolation Spaces. An introduction., Grundlehren Math. Wiss. Vol. 223, Springer, Berlin, 1976 | MR | Zbl

[4] Brenner S., Scott L., The Mathematical Theory of Finite Element Methods, Texts Appl. Math. Vol. 20, Springer, Berlin, 2002 | MR

[5] Bryan K., Vogelius M., “A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements”, SIAM J. Math. Anal., 23 (1992), 950–958 | DOI | MR | Zbl

[6] Bryan K., Vogelius M., “A computational algorithm to determine crack location from electrostatic boundary measurements. The case of multiple cracks”, Internat. J. Engrg. Sci., 32:4 (1994), 579–604 | DOI | MR

[7] Ciarlet P., Mathematical Elasticity, Stud. Math. Its Appl. Vol. 20 I: Three-dimensional elasticity, North-Holland, Amsterdam, 1988 | MR | Zbl

[8] Duvaut D., Lions J., Les inequations en mechanique et en physique, Dunod, Paris, 1972 | MR | Zbl

[9] Elcrat A., Isakov V., Neculoiu O., “On finding a surface crack from boundary measurements”, Inverse Problems, 11 (1995), 343–351 | DOI | MR | Zbl

[10] Friedman A., Vogelius M., “Determining cracks by boundary measurements”, Indiana Univ. Math. J., 38 (1989), 527–556 | DOI | MR | Zbl

[11] Grisvard P., Singularities in Boundary Value Problemes, Masson, Paris ; Berlin; Recherches en Mathématiques appliquées Vol. 22, Springer, 1992 | MR | Zbl

[12] Kozlov V., Mazya V., Fomin A., “An iterative method for solving the Cauchy problem for elliptic equations”, Comput. Math. Math. Phys., 31:1 (1991), 4552 | MR

[13] Kubo S., “Requirements for uniqueness of crack identification from potential distributions”, Inverse Problems in Engineering Sciences (Proceedings of a Conf. Held in Osaka, Japan August 19–20, 1990), ed. M. Yamaguti et al., Springer, Tokyo, 1991, 52–58

[14] Kubo S., “Crack identification from electric potential distributions and its uniqueness”, Modelling, Computation and Analysis in Fracture Mechanics (Proc. of a Seminar Held at Ube City, Yamaguchi, Japan in July, 1993), Lect. Notes Numer. Appl. Anal., 13, eds. Y. Fujitani et al., Kinokuniya, Tokyo, 1994, 189 | MR | Zbl

[15] Marsden J., Hughes T., Mathematical Foundations of Elasticity, Prentice Hall, 1983 | Zbl

[16] Petree J., “Espaces d'interpolation, generalisations, applications”, Rend. Sem. Mat. Fis. Milano, 34 (1964), 133–164 | DOI | MR

[17] Petree J., “On the theory of interpolation spaces”, Rev. Un. Mat. Argentina, 23 (19), 49–66 | MR

[18] Petree J., “Approximations of norms”, J. Approx. Theory, 3 (1970), 243–260 | DOI

[19] Petree J., “On interpolation functions”, Acta Sci. Math., 30 (1970), 235–239

[20] Petree J., “A new approach in interpolation spaces”, Studia Math., 34 (1970), 23–42 | MR

[21] Riesz F., Nagy B. Sz., Functional Analysis, Dover Books on Adv. Math., Dover, 1990 | MR | Zbl

[22] Santosa F., Vogelius M., “A computational algorithm to determine cracks from electrostatic boundary measurements”, Internat. J. Engrg. Sci., 29 (1991), 917937 | DOI

[23] Stakgold I., Greens Functions and Boundary Value Problems, Wiley, 1979 | MR | Zbl

[24] Weikl W., Andrae H., Schnack E., “An alternating iterative algorithm for the reconstruction of internal cracks in a three-dimensional solid body”, Inverse Problems, 17:6 (2001), 195 | DOI | MR

[25] Yosida K., Functional Analysis, Springer, Berlin, 1994 | Zbl