Certain inverse problems for parabolic equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 187-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study the inverse problem of finding the solution $u$ and the coefficient $q$ from the following data: \begin{gather*} Mu=u_t-L(x,t,D_x)u+g(x,t,u,\nabla u)+q(x,t)u(x,t)=f(x,t), \\ (x,t)\in Q=G\times(0,T), \\ u|_{S}=\varphi(x,t),\quad \frac{\partial u}{\partial n}\biggr|_{S}=\psi(x,t),\quad u|_{t=0}=u_0(x),\quad S=\Gamma\times(0,T), \end{gather*} where $G\subset\mathbb R^n$ is a bounded domain with boundary $\Gamma$ and $L$ is a second-order elliptic operator. We prove that the problem is solvable locally in time or in the case where the norms of its data are sufficiently small.
@article{FPM_2006_12_4_a11,
     author = {S. G. Pyatkov},
     title = {Certain inverse problems for parabolic equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {187--202},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a11/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - Certain inverse problems for parabolic equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 187
EP  - 202
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a11/
LA  - ru
ID  - FPM_2006_12_4_a11
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T Certain inverse problems for parabolic equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 187-202
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a11/
%G ru
%F FPM_2006_12_4_a11
S. G. Pyatkov. Certain inverse problems for parabolic equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 187-202. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a11/

[1] Agranovich M. S., Vishik M. P., “Ellipticheskie zadachi s parametrom i parabolicheskie obschego vida”, Uspekhi mat. nauk, 19:3 (1964), 53–161 | Zbl

[2] Baranov P. N. Belov Yu. Ya., “O zadache identifikatsii dvukh neizvestnykh koeffitsientov s neodnorodnymi usloviyami pereopredeleniya”, Neklassicheskie uravneniya matematicheskoi fiziki, Institut matematiki SO RAN, Novosibirsk, 2002, 11–22 | Zbl

[3] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[4] Demidenko G. V., Uspenskii S. V, ravneniya i sistemy, ne razreshënnye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998 | MR | Zbl

[5] Egorov I. E., Pyatkov S. G. Popov S. V, Neklassicheskie operatorno-differentsialnye uravneniya, Nauka, Novosibirsk, 2000 | MR

[6] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[7] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[8] Uspenskii S. V. Demidenko G. V., Perepëlkin V. G., Teoremy vlozheniya i ikh prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1984 | Zbl

[9] Agmon S., Lectures on elliptic boundary value problems, D. Van Nostrand Company, New York, 1965 | MR | Zbl

[10] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math, 12 (1959), 623–727 | DOI | MR | Zbl

[11] Anikonov Yu. E., Belov Yu. Ya., “Determining of two unknown coefficients of parabolic-type equation”, J. Inverse Ill-Posed Probl., 9:5 (2001), 469–488 | MR

[12] Belov Yu. Ya., “Inverse problems for parabolic equations”, J. Inverse Ill-Posed Probl., 1:4 (1993), 283–301 | DOI | MR

[13] Belov Yu. Ya., Shipina T. N., “The problem of determining a coefficient in the parabolic equation and some properties of its solution”, J. Inverse Ill-Posed Probl., 9:1 (2001), 31–48 | MR | Zbl

[14] Grisvard P., Da Prato G., “Sommes d'operatours lineaires et equations differentielles operationnelles”, J. Math. Pures Appl., 54:2 (1975), 305–387 | MR | Zbl

[15] Isakov V., Inverse Problems for Partial Differential Equations, Springer, Berlin, 1998 | MR | Zbl

[16] Klibanov M. V., “Carleman estimates and inverse problems in the last two decades”, Surveys on Solutions Methods for Inverse Problems, Springer, Wien, 2000, 119–146 | MR | Zbl

[17] Kozhanov A. I., Composite-Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[18] Lavrentiev M. M., Romanov V. G., Vasiliev V. G., Multidimensional Inverse Problems for Differential Equations, Lect. Notes Math. Vol. 167, Springer, Berlin, 1972

[19] Lions J. L., Magenes E., Non-Homogeneous Boundary Value Problems and Applications, I, Springer, Berlin, 1972

[20] Nirenberg L., Topics in Nonlinear Functional Analysis, New York Univ., New York, 1974 | MR

[21] Triebel H., Interpolation Theory. Function Spaces. Differential Operators, VEB Deutsch. Verlag Wissensch, Berlin, 1978 | MR

[22] Yamamoto M., “Conditional stability in determination of densities of heat sources in a bounded domain”, Estimation and Control of Distributed Parameter Systems, eds. Desch W., Kappel P., Kunisch K., Birkhäuser, Basel, 1994, 359–370 | MR | Zbl