Certain inverse problems for parabolic equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 187-202

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we study the inverse problem of finding the solution $u$ and the coefficient $q$ from the following data: \begin{gather*} Mu=u_t-L(x,t,D_x)u+g(x,t,u,\nabla u)+q(x,t)u(x,t)=f(x,t), \\ (x,t)\in Q=G\times(0,T), \\ u|_{S}=\varphi(x,t),\quad \frac{\partial u}{\partial n}\biggr|_{S}=\psi(x,t),\quad u|_{t=0}=u_0(x),\quad S=\Gamma\times(0,T), \end{gather*} where $G\subset\mathbb R^n$ is a bounded domain with boundary $\Gamma$ and $L$ is a second-order elliptic operator. We prove that the problem is solvable locally in time or in the case where the norms of its data are sufficiently small.
@article{FPM_2006_12_4_a11,
     author = {S. G. Pyatkov},
     title = {Certain inverse problems for parabolic equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {187--202},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a11/}
}
TY  - JOUR
AU  - S. G. Pyatkov
TI  - Certain inverse problems for parabolic equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 187
EP  - 202
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a11/
LA  - ru
ID  - FPM_2006_12_4_a11
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%T Certain inverse problems for parabolic equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 187-202
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a11/
%G ru
%F FPM_2006_12_4_a11
S. G. Pyatkov. Certain inverse problems for parabolic equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 187-202. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a11/