Certain inverse problems for parabolic equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 187-202
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we study the inverse problem of finding the solution $u$ and the coefficient $q$ from the following data:
\begin{gather*}
Mu=u_t-L(x,t,D_x)u+g(x,t,u,\nabla u)+q(x,t)u(x,t)=f(x,t),
\\
(x,t)\in Q=G\times(0,T),
\\
u|_{S}=\varphi(x,t),\quad
\frac{\partial u}{\partial n}\biggr|_{S}=\psi(x,t),\quad
u|_{t=0}=u_0(x),\quad
S=\Gamma\times(0,T),
\end{gather*}
where $G\subset\mathbb R^n$ is a bounded domain with boundary $\Gamma$ and $L$ is a second-order elliptic operator. We prove that the problem is solvable locally in time or in the case where the norms of its data are sufficiently small.
@article{FPM_2006_12_4_a11,
author = {S. G. Pyatkov},
title = {Certain inverse problems for parabolic equations},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {187--202},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a11/}
}
S. G. Pyatkov. Certain inverse problems for parabolic equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 187-202. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a11/