On stabilization of solutions of singular elliptic equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 169-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear and quasi-linear elliptic equations containing the Bessel operator with respect to a selected variable (so-called special variable) are studied. The well-posedness of the nonclassical Dirichlet problem (with the additional condition of evenness with respect to the special variable) in the half-space is proved, an integral representation of the solution is constructed, and a necessary and sufficient condition of the stabilization is established. The stabilization is understood as follows: the solution has a finite limit as the independent variable tends to infinity along the direction orthogonal to the boundary hyperplane.
@article{FPM_2006_12_4_a10,
     author = {A. B. Muravnik},
     title = {On stabilization of solutions of singular elliptic equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {169--186},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a10/}
}
TY  - JOUR
AU  - A. B. Muravnik
TI  - On stabilization of solutions of singular elliptic equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 169
EP  - 186
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a10/
LA  - ru
ID  - FPM_2006_12_4_a10
ER  - 
%0 Journal Article
%A A. B. Muravnik
%T On stabilization of solutions of singular elliptic equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 169-186
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a10/
%G ru
%F FPM_2006_12_4_a10
A. B. Muravnik. On stabilization of solutions of singular elliptic equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 169-186. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a10/

[1] Baidakov A. N., “O razreshimosti kraevykh zadach dlya lineinykh i kvazilineinykh uravnenii $B$-ellipticheskogo tipa”, DAN SSSR, 266:2 (1982), 265–267 | MR | Zbl

[2] Baidakov A. N., “O razreshimosti odnoi kraevoi zadachi dlya kvazilineinykh $B$-ellipticheskikh uravnenii”, Kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, In-t matematiki SO AN SSSR, 1986, 18–25 | MR

[3] Baidakov A. N., “Apriornye otsenki gëlderovykh norm reshenii kvazilineinykh $B$-ellipticheskikh uravnenii”, Differents. uravneniya, 23:11 (1987) | MR | Zbl

[4] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[5] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966

[6] Denisov V. N., Muravnik A. B., “O stabilizatsii resheniya zadachi Koshi dlya kvazilineinykh parabolicheskikh uravnenii”, Differents. uravneniya, 38:3 (2002), 351–355 | MR | Zbl

[7] Denisov V. N., Muravnik A. B., “Ob asimptotike resheniya zadachi Dirikhle dlya ellipticheskogo uravneniya v poluprostranstve”, Nelineinyi analiz i nelineinye differentsialnye uravneniya, FIZMATLIT, 2003, 397–417 | MR | Zbl

[8] Denisov V. N., Repnikov V. D., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskikh uravnenii”, Differents. uravneniya, 1984, no. 1

[9] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR

[10] Kondratev V. A., Landis E. M., “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki, 32, VINITI, M., 1988, 99–218 | MR

[11] Muravnik A. B., “O stabilizatsii resheniya odnoi singulyarnoi zadachi”, Kraevye zadachi dlya neklassicheskikh uravnenii matematicheskoi fiziki, In-t matematiki SO AN SSSR, 1987, 99–104 | MR

[12] Muravnik A. B., “O stabilizatsii reshenii nekotorykh singulyarnykh kvazilineinykh parabolicheskikh zadach”, Mat. zametki, 74:6 (2003), 858–865 | MR | Zbl

[13] Pokhozhaev S I., “Ob uravneniyakh vida $\Delta u=f(x,u,Du)$”, Mat. sb., 113:2 (1980), 324–338 | MR | Zbl

[14] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl

[15] Denisov V N,, Muravnik A. B., “On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations”, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 88–93 | DOI | MR | Zbl

[16] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer, 1977 | MR | Zbl

[17] Huber A., “On the uniqueness of generalized axially symmetric potentials”, Ann. Math., 60:2 (1954), 351–358 | DOI | MR | Zbl

[18] Kardar M., Parisi G., Zhang Y.-C., “Dynamic scaling of growing interfaces”, Phys. Rev. Lett., 56 (1986), 889–892 | DOI | Zbl

[19] Medina E., Hwa T., Kardar M., Zhang Y.-C., “Burgers equation with correlated noise: Renormalization group analysis and applications to directed polymers and interface growth”, Phys. Rev. A, 39 (1989), 3053–3075 | DOI | MR