On stabilization of solutions of singular elliptic equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 169-186

Voir la notice de l'article provenant de la source Math-Net.Ru

Linear and quasi-linear elliptic equations containing the Bessel operator with respect to a selected variable (so-called special variable) are studied. The well-posedness of the nonclassical Dirichlet problem (with the additional condition of evenness with respect to the special variable) in the half-space is proved, an integral representation of the solution is constructed, and a necessary and sufficient condition of the stabilization is established. The stabilization is understood as follows: the solution has a finite limit as the independent variable tends to infinity along the direction orthogonal to the boundary hyperplane.
@article{FPM_2006_12_4_a10,
     author = {A. B. Muravnik},
     title = {On stabilization of solutions of singular elliptic equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {169--186},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a10/}
}
TY  - JOUR
AU  - A. B. Muravnik
TI  - On stabilization of solutions of singular elliptic equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 169
EP  - 186
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a10/
LA  - ru
ID  - FPM_2006_12_4_a10
ER  - 
%0 Journal Article
%A A. B. Muravnik
%T On stabilization of solutions of singular elliptic equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 169-186
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a10/
%G ru
%F FPM_2006_12_4_a10
A. B. Muravnik. On stabilization of solutions of singular elliptic equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 169-186. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a10/