Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence and uniqueness of weak solutions of the Dirichlet problem for the nonlinear degenerate parabolic equations $$ u_{t}=\operatorname{div}(a|u|^{\gamma(x,t)}\nabla u)+\mathbf{b}|u|^{\gamma(x,t)/2}\nabla u-c|u|^{\sigma (x,t)-2}u+d, $$ where $a$, $\mathbf{b}$, $c$, and $d$ are given functions of the arguments $x$, $t$, and $u(x,t)$, and the exponents of nonlinearity $\gamma(x,t)$ and $\sigma(x,t)$ are known measurable and bounded functions of their arguments.
@article{FPM_2006_12_4_a0,
     author = {S. N. Antontsev and S. I. Shmarev},
     title = {Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/}
}
TY  - JOUR
AU  - S. N. Antontsev
AU  - S. I. Shmarev
TI  - Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 3
EP  - 19
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/
LA  - ru
ID  - FPM_2006_12_4_a0
ER  - 
%0 Journal Article
%A S. N. Antontsev
%A S. I. Shmarev
%T Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 3-19
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/
%G ru
%F FPM_2006_12_4_a0
S. N. Antontsev; S. I. Shmarev. Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 3-19. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/