Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_4_a0, author = {S. N. Antontsev and S. I. Shmarev}, title = {Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--19}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/} }
TY - JOUR AU - S. N. Antontsev AU - S. I. Shmarev TI - Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 3 EP - 19 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/ LA - ru ID - FPM_2006_12_4_a0 ER -
%0 Journal Article %A S. N. Antontsev %A S. I. Shmarev %T Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 3-19 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/ %G ru %F FPM_2006_12_4_a0
S. N. Antontsev; S. I. Shmarev. Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 3-19. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/
[1] Antontsev S. N., Lokalizatsiya reshenii vyrozhdayuschikhsya uravnenii mekhaniki sploshnoi sredy, AN SSSR, Sibirskoe Otdelenie, Novosibirsk, 1986 | MR
[2] Antontsev S. N., Dias Kh. I., Domanskii A. V., “Ustoichivost i stabilizatsiya obobschënnykh reshenii vyrozhdayuschikhsya zadach dvukhfaznoi filtratsii”, Dokl. RAN, 325 (1992), 1151–1155 | MR | Zbl
[3] Antontsev S. N., “Nepreryvnaya zavisimost i stabilizatsiya reshenii vyrozhdayuscheisya sistemy uravnenii dvukhfaznoi filtratsii.”, Dinamika sploshnoi sredy. Dinamika zhidkosti so svobodnymi granitsami, 107, 1993, 11–25 | MR | Zbl
[4] Antontsev S. N., Domanskii A. V., “Edinstvennost obobschënnykh reshenii vyrozhdennoi zadachi dvukhfaznoi filtratsii”, Chislennye metody mekhaniki sploshnoi sredy, 15, no. 6, 1984, 15–27 | MR | Zbl
[5] Antontsev S. N., Domanskii A. V., Penkovskii V. I., Filtratsiya v priskvazhinnoi zone plasta i problemy intensifikatsii pritoka., AN SSSR, Sibirskoe Otdelenie, Institut gidrodinamiki, Novosibirsk, 1989 | Zbl
[6] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnoi zhidkosti, Nauka, Novosibirsk, 1983 | Zbl
[7] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, Uspekhi mat. nauk, 42:2 (1987), 135–176 | MR | Zbl
[8] Kalashnikov A. S., “Nelineinye effekty pri rasprostranenii tepla v srede s istochnikami i stokami, blizkie lineinym”, Differents. uravn., 31:2 (1995), 277–288 | MR | Zbl
[9] Kalashnikov A. S., “O nekotorykh zadachakh nelineinoi teorii teploprovodnosti s dannymi, soderzhaschimi malyi parametr v eksponentakh”, ZhVM i MF, 35:7 (1995), 1077–1094 | MR | Zbl
[10] Kalashnikov A. S., “O nekotorykh nelineinykh zadachakh matematicheskoi fiziki s eksponentami, blizkimi k kriticheskim”, Tr. seminara im. I. G. Petrovskogo, no. 19, 1996, 73–98 | MR | Zbl
[11] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[12] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[13] Acerbi A., Mignione G., Seregin G., “Regularity results for a class of parabolic systems related to a class of non-newtonian fluids”, Ann. Inst. H. Poincaré, 21:6 (2004), 25–60 | MR | Zbl
[14] Antontsev S. N., Díaz J. I., Shmarev S., “Energy Methods for Free Boundary Problems”, Applications to Non-Linear PDEs and Fluid Mechanics, Bikhäuser, Boston, 2002 | MR
[15] Antontsev S. N., Gagneux G., “Petits paramètres et passages à la limite dans les problèmes de filtration diphasique”, Progress in Partial Differential Equations (Papers from the 3rd European Conf. on Elliptic and Parabolic Problems, Pont-à-Mousson, France, June, 1997), Pitman Res. Notes Math. Ser., 383, ed. H. Amann, Longman, Harlow, 1998, 18–27 | MR | Zbl
[16] Antontsev S. N., Shmarev S., “A model porous medium equation with variable exponents of nonlinearity: Existence, uniqueness and localization properties of solutions”, Nonlinear Anal., Theory Methods Appl., 60:3 (A) (2005), 515–545 | DOI | MR | Zbl
[17] Antontsev S. N., Shmarev S., “A generalized porous medium equation with variable exponents of nonlinearity: Existence, uniqueness and localization properties of solutions”, Int. Conf. “Differential Equations and Related Topics” dedicated to I. G. Petrovskii (2004), Book of Abstracts, 14–15
[18] Aronson D. G., “The porous medium equation”, Nonlinear Diffusion Problems (Lect. 2nd, 1985 Sess. C.I.M.E., Montecatini Terme/Italy), Lect. Notes Math., 1224, Springer, Berlin, 1985, 1–46 | MR
[19] Bénilan P., Boccardo L., Herrero M. A., “On the limit of solutions of $u_t=\Delta u^m$ as $m\to\infty$”, Rend. Sem. Mat. Univ. Politec. Torino, 1991, 1–13 | MR
[20] Chasseigne E., Vazquez J. L., “Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from Singularities”, Arch. Ration. Mech. Anal., 164:2 (2002), 133–187 | DOI | MR | Zbl
[21] Elliott C. M., Herrero M. A., King J. R., Ockendon J. R., “The mesa problem: Diffusion patterns for $u_t=\nabla\cdot(u^m\nabla u)$ as $m\to+\infty$”, IMA J. Appl. Math., 37 (1986), 147–154 | DOI | MR | Zbl
[22] Hsu S.-Y., “Removable singularities and non-uniqueness of solutions of a singular diffusion equation”, Math. Ann., 325 (2003), 665–693 | DOI | MR | Zbl
[23] Růžička M., Electrorheological Fluids: Modeling and Mathematical Theory, Lect. Notes Math., 1748, Springer, Berlin, 2000 | MR | Zbl
[24] Simon J., “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl. IV Ser., 146 (1987), 65–96 | DOI | MR | Zbl