Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 3-19
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the existence and uniqueness of weak solutions of the Dirichlet problem for the nonlinear degenerate parabolic equations
$$
u_{t}=\operatorname{div}(a|u|^{\gamma(x,t)}\nabla u)+\mathbf{b}|u|^{\gamma(x,t)/2}\nabla u-c|u|^{\sigma (x,t)-2}u+d,
$$
where $a$, $\mathbf{b}$, $c$, and $d$ are given functions of the arguments $x$, $t$, and $u(x,t)$, and the exponents of nonlinearity $\gamma(x,t)$ and $\sigma(x,t)$ are known measurable and bounded functions of their arguments.
@article{FPM_2006_12_4_a0,
author = {S. N. Antontsev and S. I. Shmarev},
title = {Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--19},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/}
}
TY - JOUR AU - S. N. Antontsev AU - S. I. Shmarev TI - Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 3 EP - 19 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/ LA - ru ID - FPM_2006_12_4_a0 ER -
%0 Journal Article %A S. N. Antontsev %A S. I. Shmarev %T Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 3-19 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/ %G ru %F FPM_2006_12_4_a0
S. N. Antontsev; S. I. Shmarev. Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 3-19. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a0/