Laurent rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 151-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a study of ring-theoretic properties of a Laurent ring over a ring $A$, which is defined to be any ring formed from the additive group of Laurent series in a variable $x$ over $A$, such that left multiplication by elements of $A$ and right multiplication by powers of $x$ obey the usual rules, and such that the lowest degree of the product of two nonzero series is not less than the sum of the lowest degrees of the factors. The main examples are skew-Laurent series rings $A((x;\varphi))$ and formal pseudo-differential operator rings $A((t^{-1};\delta))$, with multiplication twisted by either an automorphism $\varphi$ or a derivation $\delta$ of the coefficient ring $A$ (in the latter case, take $x=t^{-1}$). Generalized Laurent rings are also studied. The ring of fractional $n$-adic numbers (the localization of the ring of $n$-adic integers with respect to the multiplicative set generated by $n$) is an example of a generalized Laurent ring. Necessary and/or sufficient conditions are derived for Laurent rings to be rings of various standard types. The paper also includes some results on Laurent series rings in several variables.
@article{FPM_2006_12_3_a8,
     author = {D. A. Tuganbaev},
     title = {Laurent rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--224},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a8/}
}
TY  - JOUR
AU  - D. A. Tuganbaev
TI  - Laurent rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 151
EP  - 224
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a8/
LA  - ru
ID  - FPM_2006_12_3_a8
ER  - 
%0 Journal Article
%A D. A. Tuganbaev
%T Laurent rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 151-224
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a8/
%G ru
%F FPM_2006_12_3_a8
D. A. Tuganbaev. Laurent rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 151-224. http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a8/

[1] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[2] Maltsev A. I., “O vlozhenii gruppovykh algebr v tela”, DAH SSSR, 60 (1948), 1499–1501

[3] Parshin A. N., “O koltse formalnykh psevdodifferentsialnykh operatorov”, Tr. Mat. in-ta im. V. A. Steklova, 224, 1999, 291–305 | MR | Zbl

[4] Sonin K. I., “Regulyarnye koltsa ryadov Lorana”, Fundament. i prikl. mat., 1:1 (1995), 315–317 | MR | Zbl

[5] Sonin K. I., “Regulyarnye koltsa kosykh ryadov Lorana”, Fundament. i prikl. mat., 1:2 (1995), 565–568 | MR | Zbl

[6] Sonin K. I., “Biregulyarnye koltsa ryadov Lorana”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1997, no. 4, 22–24 | MR

[7] Tuganbaev D. A., “Tsepnye koltsa ryadov Lorana”, Fundament. i prikl. mat., 3:3 (1997), 947–951 | MR | Zbl

[8] Tuganbaev D. A., “Tsepnye koltsa kosykh ryadov Lorana”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2000, no. 1, 52–55 | MR | Zbl

[9] Tuganbaev D. A., “Koltsa kosykh ryadov Lorana i koltsa glavnykh idealov”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2000, no. 5, 55–57 | MR | Zbl

[10] Tuganbaev D. A., “Polulokalnye distributivnye koltsa kosykh ryadov Lorana”, Fundament. i prikl. mat., 6:3 (2000), 913–921 | MR | Zbl

[11] Tuganbaev D. A., “Koltsa psevdodifferentsialnykh operatorov i usloviya na tsepi”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2002, no. 4, 26–32 | MR | Zbl

[12] Feis K., Algebra: koltsa, moduli i kategorii, Mir, M., 1979 | MR

[13] Cohn P. M., Skew fields, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[14] Goodearl K. R., “Centralizers in differential, pseudo-differential, and fractional differential operator rings”, Rocky Mountain J. Math., 13:4 (1983), 573–618 | DOI | MR | Zbl

[15] Goodearl K. R., Warfield R. B., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, Cambridge, 1989 | MR | Zbl

[16] Neumann B. H., “On ordered division rings”, Trans. Amer. Math. Soc., 66 (1949), 202–252 | DOI | MR | Zbl

[17] Sonin C., “Krull dimension of Malcev–Neumann rings”, Comm. Algebra, 26:9 (1998), 2915–2931 | DOI | MR | Zbl

[18] Tuganbaev A. A., Semidistributive Modules and Rings, Kluwer Academic, Dordrecht, 1998 | MR | Zbl

[19] Tuganbaev A. A., Distributive Modules and Related Topics, Gordon and Breach, Amsterdam, 1999 | MR | Zbl

[20] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl

[21] Tuganbaev D. A., “Some ring and module properties of skew Laurent series”, Formal Power Series and Algebraic Combinatorics, eds. D. Krob, A. A. Mikhalev, A. V. Mikhalev, Springer, Berlin, 2000, 613–622 | MR | Zbl