Distributive extensions of modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 141-150
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a submodule of a module $M$. The extension $X\subseteq M$ is said to be distributive if $X\cap(Y+Z)=X\cap Y+X\cap Z$ for any two submodules $Y$ and $Z$ of $M$. We study distributive extensions of modules over not necessarily commutative rings. In particular, it is proved that the following three conditions are equivalent: (1) $X_A\subseteq M_A$ is a distributive extension; (2) for any submodule $Y$ of the module $M$, no simple subfactor of the module $X/(X\cap Y)$ is isomorphic to any simple subfactor of $Y/(X\cap Y)$ (3) for any two elements $x\in X$ and $m\in M$, there does not exist a simple factor module of the cyclic module $xA/(X\cap mA)$ that is isomorphic to a simple factor module of the cyclic module $mA/(X\cap mA)$.
@article{FPM_2006_12_3_a7,
author = {A. A. Tuganbaev},
title = {Distributive extensions of modules},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {141--150},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a7/}
}
A. A. Tuganbaev. Distributive extensions of modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 141-150. http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a7/