Triple products of Coleman's families
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 89-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss modular forms as objects of computer algebra and as elements of certain $p$-adic Banach modules. We discuss a problem-solving approach in number theory, which is based on the use of generating functions and their connection with modular forms. In particular, the critical values of various $L$-functions of modular forms produce nontrivial but computable solutions of arithmetical problems. Namely, for a prime number we consider three classical cusp eigenforms $$ f_j(z)=\sum_{n=1}^\infty a_{n,j}e(nz)\in\mathcal S_{k_j}(N_j,\psi_j)\quad (j=1, 2,3) $$ of weights $k_1$, $k_2$, and $k_3$, of conductors $N_1$, $N_2$, and $N_3$, and of Nebentypus characters $\psi_j\bmod N_j$. The purpose of this paper is to describe a four-variable $p$-adic $L$-function attached to Garrett's triple product of three Coleman's families $$ k_j\mapsto\biggl\{f_{j,k_j}=\sum_{n=1}^\infty a_{n,j}(k)q^n\biggr\} $$ of cusp eigenforms of three fixed slopes $\sigma_j=v_p\bigl(\alpha_{p, j}^{(1)}(k_j)\bigr)\ge0$, where $\alpha_{p,j}^{(1)}=\alpha_{p,j}^{(1)}(k_j)$ is an eigenvalue (which depends on $k_j$) of Atkin's operator $U=U_p$.
@article{FPM_2006_12_3_a5,
     author = {A. A. Panchishkin},
     title = {Triple products of {Coleman's} families},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a5/}
}
TY  - JOUR
AU  - A. A. Panchishkin
TI  - Triple products of Coleman's families
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 89
EP  - 100
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a5/
LA  - ru
ID  - FPM_2006_12_3_a5
ER  - 
%0 Journal Article
%A A. A. Panchishkin
%T Triple products of Coleman's families
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 89-100
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a5/
%G ru
%F FPM_2006_12_3_a5
A. A. Panchishkin. Triple products of Coleman's families. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 89-100. http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a5/

[1] Manin Yu. I., “Periody parabolicheskikh form i $p$-adicheskie ryady Gekke”, Mat. sb., 92:3 (1973), 378–401 | MR | Zbl

[2] Manin Yu. I., “Znacheniya $p$-adicheskikh ryadov Gekke v tselykh tochkakh kriticheskoi polosy”, Mat. sb., 93 (1974), 621–626 | MR | Zbl

[3] Manin Yu. I., “Nearkhimedovo integrirovanie i $p$-adicheskie $L$-funktsii Zhake–Lenglendsa”, Uspekhi mat. nauk, 31 (1976), 3–54

[4] Manin Yu. I., Panchishkin A. A., “Svërtki ryadov Gekke i ikh znacheniya v tselykh tochkakh”, Mat. sb., 104 (1977), 617–651 | MR | Zbl

[5] Amice Y., Vélu J., “Distributions $p$-adiques associées aux séries de Hecke”, Astérisque, 24/25, 1975, 119–131 | MR | Zbl

[6] Batut C., Belabas D., Bernardi H., Cohen H., Olivier M., The PARI/GP number theory system., http://www.pari.math.u-bordeaux.fr

[7] Böcherer S., “Über die Fourier–Jacobi-Entwickelung Siegelscher Eisensteinreihen”, Math. Z, 183 (1983), 21–46 | DOI | MR | Zbl

[8] Böcherer S., “Über die Fourier–Jacobi-Entwickelung Siegelscher Eisensteinreihen. II”, Math. Z., 189 (1985), 81–100 | DOI | MR

[9] Böcherer S., “Über die Funktionalgleichung automorpher $L$-Funktionen zur Siegelscher Modulgruppe”, J. Reine Angew. Math., 362 (1985), 146–168 | DOI | MR | Zbl

[10] Böcherer S., “Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe”, Abh. Math. Sem. Univ. Hamburg, 56 (1986), 35–47 | DOI | MR | Zbl

[11] Böcherer S., Heim B., “$L$-functions on $\mathrm{GSp}_2\times\mathrm{Gl}_2$ of mixed weights”, Math. Z, 235:1 (2000), 11–51 | DOI | MR | Zbl

[12] Böcherer S., Satoh T., Yamazaki T., “On the pullback of a differential operator and its application to vector valued Eisenstein series”, Comm. Math. Univ. S. Pauli, 41 (1992), 1–22 | MR | Zbl

[13] Böcherer S., Schmidt C.-G., “$p$-adic measures attached to Siegel modular forms”, Ann. Inst. Fourier, 50:5 (2000), 1375–1443 | MR | Zbl

[14] Böcherer S., Schulze-Pillot R., “On the central critical value of the triple product $L$-function”, Number theory. Séminaire de Théorie des Nombres de Paris, London Math. Soc. Lect. Note Ser., 235, Cambridge University Press, Cambridge, 1993–94, 1–46 | MR

[15] Buecker K., “Congruences between Siegel modular forms on the level of group cohomology”, Ann. Inst. Fourier, 46:4 (1996), 877–897 | MR | Zbl

[16] Chandrasekharan K., Arithmetical Functions, Springer, Berlin, 1970 | MR | Zbl

[17] Coates J., “On $p$-adic $L$-functions”, Astérisque, 177/178, 1989, 33–59 | MR | Zbl

[18] Coates J., Perrin-Riou B., “On $p$-adic $L$-functions attached to motives over $\mathbb Q$”, Algebraic Number Theory in Honor of K. Iwasawa, Proc. Workshop Iwasawa Theory Spec. Values $L$-Funct. (Berkeley, USA), Adv. Stud. Pure Math., 17, Academic Press, Boston, 1987, 23–54 | MR

[19] Coleman R. F., “$p$-adic Banach spaces and families of modular forms”, Invent. Math., 127:3 (1997), 417–479 | DOI | MR | Zbl

[20] Coleman R., Mazur B., “The eigencurve”, Galois representations in arithmetic algebraic geometry, Proc. of the symposium (Durham, UK, July 9–18, 1996), London Math. Soc. Lect. Notes, 254, ed. Scholl A. J. et al., Cambridge University Press, Cambridge, 1998, 1–113 | MR | Zbl

[21] Coleman R., Stevens G., Teitelbaum J., “Numerical experiments on families of $p$-adic modular forms”, Computational Perspectives in Number Theory, Proc. of a Conference in Honor of A. O. L. Atkin (Chicago, USA, September 1995), AMS/IP Stud. Adv. Math., 7, ed. D. A. Buell, Amer. Math. Soc., Providence, 1998, 143–158 | MR | Zbl

[22] Colmez P., “Fonctions $L$ $p$-adiques”, Séminaire Bourbaki, Astérisque, 266, 1998/99, 851 | MR

[23] Colmez P., “La conjecture de Birch et Swinnerton–Dyer $p$-adique”, Séminaire Bourbaki, Astérisque, 294, 2002/2003, 919 | MR

[24] Courtieu M., Familles d'opérateurs sur les formes modulaires de Siegel et fonctions $L$ $p$-adiques, Thèse de Doctorat, Institut Fourier, 2000; http://www.fourier.ujf-grenoble.fr/THESE/ps/t101.ps.gz

[25] Courtieu M., Panchishkin A. A., Non-Archimedean $L$-Functions and Arithmetical Siegel Modular Forms. 2nd augmented ed., Lect. Notes Math., 1471, Springer, 2004 | MR | Zbl

[26] Deligne P., “Formes modulaires et reprèsentations $l$-adiques”, Séminaire Bourbaki, Lect. Notes Math., 1968/69, Springer, 1971, 139–172

[27] Deligne P., “Valeurs de fonctions $L$ et périodes d'intégrales”, Automorphic Forms, Representations and $L$-Functions, Proc. Symp. Pure Math., 33, no. 2, Amer. Math. Soc., 1979, 313–346 | MR | Zbl

[28] Feit P., Poles and Residues of Eisenstein Series for Symplectic and Unitary Groups, Mem. Amer. Math. Soc., 346, Amer. Math. Soc., 1986 | MR | Zbl

[29] Garrett P. B., “Decomposition of Eisenstein series: Rankin triple products”, Ann. Math., 125 (1987), 209–235 | DOI | MR | Zbl

[30] Garrett P. B., Harris M., “Special values of triple product $L$-functions”, Amer. J. Math., 115 (1993), 159–238 | DOI | MR

[31] Gorsse B., “Carrés symétriques de formes modulaires et intégration $p$-adique”, Mémoire de DEA de l'Institut Fourier, 2002

[32] Gorsse B., Robert G., Computing the Petersson product $\langle f^0,f_0\rangle$, Prépublication de l'Institut Fourier, No 654, 2004

[33] Ha Huy Khoai, “$p$-adic interpolation and the Mellin–Mazur transform”, Acta Math. Vietnam, 5 (1980), 77–99 | MR | Zbl

[34] Harris M., Kudla S., “The central critical value of a triple product $L$-functions”, Ann. Math., 133 (1991), 605–672 | DOI | MR | Zbl

[35] Hida H., “A $p$-adic measure attached to the zeta functions associated with two elliptic cusp forms. I”, Invent. Math., 79 (1985), 159–195 | DOI | MR | Zbl

[36] Hida H., “Galois representations into $\mathrm{GL}_2(Z_p[[X]])$ attached to ordinary cusp forms”, Invent. Math., 85 (1986), 545–613 | DOI | MR | Zbl

[37] Hida H., “Le produit de Petersson et de Rankin $p$-adique”, Séminaire de Théorie des Nombres, Paris, Birkhäuser, Boston, 1988–1989 ; Prog. Math., 91 (1990), 87–102 | MR | Zbl

[38] Hida H., Elementary Theory of $L$-Functions and Eisenstein Series, London Math. Soc. Student Texts, 26, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[39] Hida H., $p$-Adic Automorphic Forms on Shimura Varieties, Springer Monographs in Math., Springer, New York, 2004 | MR

[40] Ibukiyama T., “On differential operators on automorphic forms and invariant pluriharmonic polynomials”, Comm. Math. Univ. S. Paul, 48 (1999), 103–118 | MR | Zbl

[41] Iwasawa K., “Lectures on $p$-Adic $L$-Functions”, Ann. Math. Stud., 74 (1972), Princeton University Press | MR | Zbl

[42] Jory-Hugue F., Unicité des $h$-mesures admissibles $p$-adiques données par des valeurs de fonctions $L$ sur les caractures, no. 676, Prépublication de l'Institut Fourier, 2005

[43] Kaneko M., Zagier D., “A generalized Jacobi theta function and quasimodular forms”, The Moduli Space of Curves, Proc. of the Conf. (Texel Island, Netherlands, 1994), Prog. Math., 129, ed. Dijkgraaf R. H. et al., Birkhäuser, Boston, 1995, 165–172 | MR | Zbl

[44] Katz N. M, “$p$-Adic interpolation of real analytic Eisenstein series”, Ann. Math., 104 (1976), 459–571 | DOI | MR | Zbl

[45] Katz N. M., “$p$-adic $L$-functions for $CM$-fields”, Invent. Math., 48 (1978), 199–297 | DOI | MR

[46] Kitagawa K., “On standard $p$-adic $L$-functions of families of elliptic cusp forms”, $p$-Adic Monodromy and the Birch and Swinnerton–Dyer Conjecture (A workshop held August 12–16, 1991 in Boston, USA), Contemp. Math., 165, ed. B. Mazur et al., Amer. Math. Society, Providence, 1994, 81–110 | MR | Zbl

[47] Kubota T., Leopoldt H.-W., “Eine $p$-adische Theorie der Zetawerte”, J. Reine Angew. Math., 214/215 (196), 328–339 | MR | Zbl

[48] Lang S., Introduction to Modular Forms, Springer, 1976 | MR

[49] Maass H., Siegel's Modular Forms and Dirichlet Series, Lect. Notes Math., 216, Springer, 1971 | MR | Zbl

[50] Manin Yu. I., Panchishkin A. A., Introduction to Modern Number Theory. 2nd ed., Encyclopaedia of Mathematical Sciences, 49, Springer, 2005 | MR | Zbl

[51] Mazur B., Tate J., Teitelbaum J., “On $p$-adic analogues of the conjectures of Birch and Swinnerton–Dyer”, Invent. Math., 84 (1986), 1–48 | DOI | MR | Zbl

[52] Miyake T., Modular Forms, Springer, Berlin, 1989 | MR | Zbl

[53] Orloff T., “Special values and mixed weight triple products (with an Appendix by D. Blasius)”, Invent. Math., 90 (1987), 169–180 | DOI | MR | Zbl

[54] Nagaoka S., “A remark on Serre's example of $p$-adic Eisenstein series”, Math. Z, 235 (2000), 227–250 | DOI | MR | Zbl

[55] Nagaoka S., “Note on $\bmod p$ Siegel modular forms”, Math. Z., 235 (2000), 405–420 | DOI | MR | Zbl

[56] Panchishkin A. A., “Admissible non-Archimedean standard zeta functions of Siegel modular forms”, Motives. Proc. of the Summer Research Conf. on Motives (held at the University of Washington, Seattle, USA, July 20–August 2, 1991), 55, Pt. 2, ed. Jannsen U. et al., Amer. Math. Soc., Providence, 1994, 251–292 | MR | Zbl

[57] Panchishkin A. A., “Non-Archimedean Mellin transform and $p$-adic $L$-functions”, Vietnam J. Math., 1997, no. 3, 179 | MR | Zbl

[58] Panchishkin A. A., “On the Siegel–Eisenstein measure”, Israel J. Math., 120, Pt. B (2000), 467–509 | DOI | MR | Zbl

[59] Panchishkin A. A., “A new method of constructing $p$-adic $L$-functions associated with modular forms”, Moscow Math. J., 2:2 (2002), 313–328 | MR | Zbl

[60] Panchishkin A. A., The Maass–Shimura differential operators and congruences between arithmetical Siegel modular forms, Preprint MPI No 41, 2002 | MR

[61] Panchishkin A. A., Admissible measures for standard $L$-functions and nearly holomorphic Siegel modular forms, Preprint MPI No 42, 2002 | Zbl

[62] Panchishkin A. A., “On $p$-adic integration in spaces of modular forms and its applications”, J. Math. Sci., 115:3 (2003), 2357–2377 | DOI | MR | Zbl

[63] Panchishkin A. A., “Sur une condition suffisante pour l'existence des mesures $p$-adiques admissibles”, J. Théor. Nombres Bordeaux, 15 (200), 1–24 | MR

[64] Panchishkin A. A., “Two variable $p$-adic $L$ functions attached to eigenfamilies of positive slope”, Invent. Math., 154:3 (2003), 551–615 | DOI | MR | Zbl

[65] Piatetski-Shapiro I. I., Rallis S., “Rankin triple $L$-functions”, Compositio Math., 64 (1987), 333–399 | MR

[66] Puydt J., Valeurs spéciales de fonctions $L$ de formes modulaires adéliques, Thése de Doctorat, Institut Fourier (Grenoble), 2003

[67] Rankin R. A., “Contribution to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. I, II”, Proc. Cambridge Philos. Soc., 35 (1939), 351–372 | DOI | MR | Zbl

[68] Rankin R. A., “The scalar product of modular forms”, Proc. London Math. Soc., 2:3 (1952), 198–217 | DOI | MR | Zbl

[69] Rankin R. A., “The adjoint Hecke operator”, Automorphic Functions and Their Applications, Int. Conf. (Khabarovsk/USSR), 1988, 163–166 | MR

[70] Satoh T., “Some remarks on triple $L$-functions”, Math. Ann., 276 (1987), 687–698 | DOI | MR | Zbl

[71] Schmidt C.-G., “The $p$-adic $L$-functions attached to Rankin convolutions of modular forms”, J. Reine Angew. Math., 368 (1986), 201–220 | DOI | MR | Zbl

[72] Scholl A., “Motives for modular forms”, Invent. Math., 100 (1990), 419–430 | DOI | MR | Zbl

[73] Scholl A. J., “An introduction to Kato's Euler systems”, Galois representations in arithmetic algebraic geometry., Proc. of the Symposium (Durham, UK, July 9–18), ed. Scholl A. J., Cambridge University Press, Cambridge, 1996 ; London Math. Soc. Lect. Notes, 254 (1998), 379–460 | MR | MR | Zbl

[74] Serre J., “Endomorphisms complètement continus des espaces de Banach $p$-adiques”, Publ. Math. Inst. Hautes Etud. Sci., 12 (1962), 69–85 | DOI | MR | Zbl

[75] Serre J., “Formes modulaires et fonctions zêta $p$-adiques”, Modular Functions of one Variable III, Proc. Int. Summer School, Univ. Antwerp, Lect. Notes Math., 350, Springer, 1972, 191–268 | MR

[76] Shimura G., Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971 | MR | Zbl

[77] Shimura G., “On the holomorphy of certain Dirichlet series”, Proc. London Math. Soc., 31 (1975), 79–98 | DOI | MR | Zbl

[78] Shimura G., “The special values of the zeta functions associated with cusp forms”, Comm. Pure Appl. Math., 29:6 (1976), 783–804 | DOI | MR | Zbl

[79] Shimura G., “On the periods of modular forms”, Math. Ann., 229 (1977), 211–221 | DOI | MR | Zbl

[80] Shimura G., “Confluent hypergeometric functions on tube domains”, Math. Ann., 260 (1982), 269–302 | DOI | MR | Zbl

[81] Shimura G., “On Eisentsein series”, Duke Math. J., 50 (1983), 417–476 | DOI | MR | Zbl

[82] Shimura G., Arithmeticity in the Theory of Automorphic Forms, Math. Surveys Monographs, 82, Amer. Math. Soc., Providence, 2000 | MR | Zbl

[83] Tilouine J., Urban E., “Several variable $p$-adic families of Siegel–Hilbert cusp eigenforms and their Galois representations”, Ann. Sci. École Norm. Sup., $4^{\textrm{e}}$ sér., 32 (1999), 499–574 | MR | Zbl

[84] Višik M. M., “Non-Archimedean measures connected with Dirichlet series”, Math. USSR Sb., 28 (1978), 216–228 | DOI | Zbl

[85] Vishik M. M., Manin Yu. I., “$p$-adic Hecke series of imaginary quadratic fields”, Math. USSR Sb., 24 (1976), 345–371 | DOI | Zbl

[86] Weil A., “On a certain type of characters of the idèle-class group of an algebraic number-field”, Proc. of the Int. Symp. on Algebraic Number Theory (Tokyo Nikko), Science Council of Japan, Tokyo, 1955, 1–7 | MR

[87] Wiles A., “Modular elliptic curves and Fermat's Last Theorem”, Ann. Math., 141:3 (1995), 443–55 | DOI | MR