Asymmetric approach to computation of Gr\"obner bases
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 73-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to Buchberger's algorithm based on the use of essential multiplications and nonmultiplicative prolongations instead of traditional $S$-polynomials is described. In the framework of this approach, both Buchberger's algorithm for computing Gröbner bases and Gerdt–Blinkov algorithm for computing involutive bases obtain a unified form of description. The new approach is based on consideration of the process of determining an $S$-polynomial as a process of constructing a nonmultiplicative prolongation of a polynomial and its subsequent reducing with respect to an essential multiplication. An advantage of the method is that some “redundant” $S$-pairs are automatically excluded from consideration.
@article{FPM_2006_12_3_a4,
     author = {E. V. Pankratiev and A. S. Semenov},
     title = {Asymmetric approach to computation of {Gr\"obner} bases},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {73--88},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a4/}
}
TY  - JOUR
AU  - E. V. Pankratiev
AU  - A. S. Semenov
TI  - Asymmetric approach to computation of Gr\"obner bases
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 73
EP  - 88
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a4/
LA  - ru
ID  - FPM_2006_12_3_a4
ER  - 
%0 Journal Article
%A E. V. Pankratiev
%A A. S. Semenov
%T Asymmetric approach to computation of Gr\"obner bases
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 73-88
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a4/
%G ru
%F FPM_2006_12_3_a4
E. V. Pankratiev; A. S. Semenov. Asymmetric approach to computation of Gr\"obner bases. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 73-88. http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a4/

[1] Gerdt V. P., Yanovich D. A., Blinkov Yu. A., “Bystryi poisk delitelya Zhane”, Programmirovanie, 2001, no. 1, 32–36 | MR | Zbl

[2] Zharkov A. Yu., Blinkov Yu. A., “Involyutivnye sistemy algebraicheskikh uravnenii”, Programmirovanie, 1994

[3] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000

[4] Latyshev V. N., Kombinatornaya teoriya kolets. Standartnye bazisy, M., Izd-vo Mosk. un-ta, 1988 | MR

[5] Mikhalëv A. V., Pankratev E. V., Kompyuternaya algebra. Vychisleniya v differentsialnoi i raznostnoi algebre, Izd-vo Mosk. un-ta, M., 1989 | Zbl

[6] Semënov A. S., “Parnyi analiz involyutivnykh delenii”, Fundament. i prikl. mat., 9:3 (2003), 199–212 | Zbl

[7] Apel J., “The theory of involutive divisions and an application to Hilbert function computations”, J. Symbolic Comput., 25:6 (1998), 683–704 | DOI | MR | Zbl

[8] Calmet J., Hausdorf M., Seiler W. M., “A constructive introduction to involution”, Proc. Int. Symp. Applications of Computer Algebra ISACA (2000), New Delhi, 2001, 33–50

[9] Gebauer R., Möller H. M., “Buchberger's algorithm and staggered linear bases”, Proc. 5th ACM Symp. on Symbolic and Algebraic Computations (Waterloo, Ontario, Canada), 1986, 218–221

[10] Gerdt V. P., “Involutive division technique. Some generalizations and optimizations”, J. Math. Sci., 108:6 (2002), 1034–1051 | DOI | MR

[11] Gerdt V. P., Blinkov Yu. A., “Involutive bases of polynomial ideals”, Math. Comput. Simulation, 45 (1998), 519–542 | DOI | MR

[12] Gerdt V. P., Blinkov Yu. A., “Minimal involutive bases”, Math. Comput. Simulation, 45 (1998), 543–560 | DOI | MR | Zbl

[13] Gerdt V. P., Blinkov Yu. A., “Janet-like monomial division, Janet-like Gröbner bases”, Computer Algebra in Scientific Computing. CASC, Springer, 2005, 174–195 | MR

[14] Zharkov A. Yu., Blinkov Yu. A., Involutive bases of zero-dimensional ideals, Preprint, no. E5-94-318, Joint Institute for Nuclear Research, Dubna, 1994 | MR