Rational operators of the space of formal series
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 9-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is the following theorem: the group ring of the universal covering $\mathbb G$ of the group $\mathrm{SL}(2,\mathbb R)$ is embeddable in a skew field $\mathbb D$ with valuation in the sense of Mathiak and the valuation ring is an exceptional chain order in the skew field $\mathbb D$, i.e., there exists a prime ideal that is not completely prime. In this ring, every divisorial right fractional ideal is principal, and the linearly ordered set of all divisorial fractional right ideals is isomorphic to the real line. This theorem is a consequence of the fact that the universal covering group $\mathbb G$ satisfies sufficient conditions for the embeddability of the group ring of a left ordered group in a skew field.
@article{FPM_2006_12_3_a1,
     author = {N. I. Dubrovin},
     title = {Rational operators of the space of formal series},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {9--53},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a1/}
}
TY  - JOUR
AU  - N. I. Dubrovin
TI  - Rational operators of the space of formal series
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 9
EP  - 53
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a1/
LA  - ru
ID  - FPM_2006_12_3_a1
ER  - 
%0 Journal Article
%A N. I. Dubrovin
%T Rational operators of the space of formal series
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 9-53
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a1/
%G ru
%F FPM_2006_12_3_a1
N. I. Dubrovin. Rational operators of the space of formal series. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 3, pp. 9-53. http://geodesic.mathdoc.fr/item/FPM_2006_12_3_a1/

[1] Dubrovin N. I., “Obratimost gruppovogo koltsa pravouporyadochennoi gruppy nad telom”, Mat. zametki, 42:4 (1987), 508–518 | MR

[2] Dubrovin N. I., “Ratsionalnye zamykaniya gruppovykh kolets levouporyadochennykh grupp”, Mat. sb., 184:7 (1993), 3–48 | MR | Zbl

[3] Dubrovin N. I., “Formalnye summy i stepennye ryady nad gruppoi”, Mat. sb., 191:7 (2000), 13–30 | MR | Zbl

[4] Dubrovina T. V., Dubrovin N. I., “Konusy v gruppakh”, Mat. sb., 187:7 (1996), 59–74 | MR | Zbl

[5] Dubrovina T. V., Dubrovin N. I., “Korni v universalnoi nakryvayuschei gruppe gruppy unimodulyarnykh matrits vtorogo poryadka”, Fundament. i prikl. mat., 6:3 (2000), 757–776 | MR | Zbl

[6] Dubrovina T. V., Dubrovin N. I., “Topologicheskie lineinye prostranstva formalnykh summ”, Matematichnii Studii, 21:2 (2004), 209–220 | MR | Zbl

[7] Postnikov M. M., Lektsii po geometrii. Gruppy i algebry Li, Nauka, M., 1982 | MR

[8] Dubrovin N. I., The rational closure of group rings of left-ordered groups, SM-DU-254, Duisburg, 1994 | MR | Zbl

[9] Dubrovin N. I., Brungs H. H., “A classification and examples of rank one chain domain”, Trans. Amer. Math. Soc., 335:7 (2003), 2733–2753 | MR

[10] Dubrovin N. I., Gräter J., Hanke T., “Complexity of elements in rings”, Algebr. Represent. Theory, 6 (2003), 33–45 | DOI | MR | Zbl

[11] Mathiak K., “Zur Bewertungstheorie nicht kommutativer Körper”, J. Algebra, 73:2 (1981), 586–560 | DOI | MR