On Spechtian varieties of right alternative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 89-100
Voir la notice de l'article provenant de la source Math-Net.Ru
A sufficient condition is proved for the Specht property of varieties of right alternative metabelian algebras over a field of characteristic distinct from 2. As a consequence, the Specht property of some varieties generated by right alternative metabelian algebras $\mathcal A$ satisfying a commutator identity is stated. In particular, it is proved that if $\mathcal A^{(-)}$ is a binary Lie algebra, then $\operatorname{var}(\mathcal A)$ is Spechtian.
@article{FPM_2006_12_2_a5,
author = {A. M. Kuz'min},
title = {On {Spechtian} varieties of right alternative algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {89--100},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a5/}
}
A. M. Kuz'min. On Spechtian varieties of right alternative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 89-100. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a5/