On Spechtian varieties of right alternative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 89-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition is proved for the Specht property of varieties of right alternative metabelian algebras over a field of characteristic distinct from 2. As a consequence, the Specht property of some varieties generated by right alternative metabelian algebras $\mathcal A$ satisfying a commutator identity is stated. In particular, it is proved that if $\mathcal A^{(-)}$ is a binary Lie algebra, then $\operatorname{var}(\mathcal A)$ is Spechtian.
@article{FPM_2006_12_2_a5,
     author = {A. M. Kuz'min},
     title = {On {Spechtian} varieties of right alternative algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {89--100},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a5/}
}
TY  - JOUR
AU  - A. M. Kuz'min
TI  - On Spechtian varieties of right alternative algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 89
EP  - 100
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a5/
LA  - ru
ID  - FPM_2006_12_2_a5
ER  - 
%0 Journal Article
%A A. M. Kuz'min
%T On Spechtian varieties of right alternative algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 89-100
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a5/
%G ru
%F FPM_2006_12_2_a5
A. M. Kuz'min. On Spechtian varieties of right alternative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 89-100. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a5/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] Belkin V. P., “O mnogoobraziyakh pravoalternativnykh algebr”, Algebra i logika, 15:5 (1976), 491–508 | MR | Zbl

[3] Drenski V. S., “O tozhdestvakh v algebrakh Li”, Algebra i logika, 13:3 (1974), 265–290 | MR | Zbl

[4] Zhevlakov K. A., Slinko A. M., Shestakov I. P., Shirshov A. I., Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[5] Isaev I. M., “Konechnomernye pravoalternativnye algebry, porozhdayuschie ne konechnobaziruemye mnogoobraziya”, Algebra i logika, 25:2 (1986), 136–153 | MR | Zbl

[6] Kemer A. R., “Konechnaya baziruemost tozhdestv assotsiativnykh algebr”, Algebra i logika, 26:5 (1987), 597–641 | MR

[7] Medvedev Yu. A., “Konechnaya baziruemost mnogoobrazii s dvuchlennym tozhdestvom”, Algebra i logika, 17:6 (1978), 705–726 | MR

[8] Medvedev Yu. A., “Primer mnogoobraziya razreshimykh alternativnykh algebr nad polem kharakteristiki $2$, ne imeyuschego konechnogo bazisa tozhdestv”, Algebra i logika, 19:3 (1980), 300–313 | MR | Zbl

[9] Pchelintsev S. V., “Ob odnom pochti shpekhtovom mnogoobrazii tsentralno-metabelevykh alternativnykh algebr nad polem kharakteristiki 3”, Mat. sb., 191:6 (2000), 127–144 | MR | Zbl

[10] Umirbaev U. U., “O metabelevykh binarno-lievykh algebrakh”, Algebra i logika, 23:2 (1984), 220–227 | MR | Zbl

[11] Umirbaev U. U., “Shpekhtovost mnogoobraziya razreshimykh alternativnykh algebr”, Algebra i logika, 24:2 (1985), 226–239 | MR | Zbl

[12] Higman G., “Ordering by divisibility in abstract algebras”, Proc. London Math. Soc., 2, 1952, 326–336 | MR | Zbl

[13] Specht W., Gesetze in Ringen, Math. Z., 52, 1950 | DOI | MR | Zbl

[14] Vaughan-Lee M. R., Some varieties of Lie algebras, Ph.D. Thesis, Oxford, 1968

[15] Vaughan-Lee M. R., “Varieties of Lie algebras”, Quart. J. Math. Oxford Ser., 21:83 (1970), 297–308 | DOI | MR | Zbl