@article{FPM_2006_12_2_a4,
author = {J. Y. Kaminski and A. Ya. Kanel-Belov and M. Teicher},
title = {Trisecant lemma for nonequidimensional varieties},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {71--87},
year = {2006},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a4/}
}
J. Y. Kaminski; A. Ya. Kanel-Belov; M. Teicher. Trisecant lemma for nonequidimensional varieties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 71-87. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a4/
[1] Shafarevich I. R., Osnovy algebraicheskoi geometrii, 1, Nauka, M., 1988 | MR
[2] Adlansvik B., “Joins and higher secant varieties”, Math. Scand., 61 (1987), 213–222 | MR
[3] Adlansvik B., “Varieties with extremal number of degenerate higher secant varieties”, J. Reine Angew. Math., 392 (1988), 16–26 | DOI | MR
[4] Barnabei M., Brini A., Rota G. C., “On the exterior calculus of invariant theory”, J. Algebra, 96 (1985), 120–160 | DOI | MR | Zbl
[5] Flenner H., O'Carroll L., Vogel W., Joins and Intersections, Springer, 1999 | MR
[6] Harris J., Algebraic Geometry, Springer, 1992 | MR
[7] Hartshorne R., Algebraic Geometry, Springer, 1997 | MR | Zbl
[8] Laudal O. A., “A generalized trisecant lemma”, Algebraic Geometry Proc., Lect. Notes Math., 687, Springer, 1977
[9] Liu Q., Algebraic Geometry and Arithmetic Curves, Oxford University Press, 2002 | MR
[10] Ran Z., “The $(dimension+2)$-secant lemma”, Invent. Math., 106 (1991), 65–71 | DOI | MR | Zbl
[11] Zak F., Tangents and Secants of Algebraic Varieties, Amer. Math. Soc., Providence, 1992 | MR | Zbl