Trisecant lemma for nonequidimensional varieties
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 71-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be an irreducible projective variety over an algebraically closed field of characteristic zero. For $r \geq3$, if every $(r-2)$-plane $\overline{x_1,\dots,x_{r-1}}$, where the $x_i$ are generic points, also meets $X$ in a point $x_r$ different from $x_1,\dots,x_{r-1}$, then $X$ is contained in a linear subspace $L$ such that $\operatorname{codim}_L X \leq r-2$. In this paper, our purpose is to present another derivation of this result for $r=3$ and then to introduce a generalization to nonequidimensional varieties. For the sake of clarity, we shall reformulate our problem as follows. Let $Z$ be an equidimensional variety (maybe singular and/or reducible) of dimension $n$, other than a linear space, embedded into $\mathbb P^r$, where $r \geq n+1$. The variety of trisecant lines of $Z$, say $V_{1,3}(Z)$, has dimension strictly less than $2n$, unless $Z$ is included in an $(n+1)$-dimensional linear space and has degree at least 3, in which case $\dim V_{1,3}(Z) = 2n$. This also implies that if $\dim V_{1,3}(Z)=2n$, then $Z$ can be embedded in $\mathbb P^{n+1}$. Then we inquire the more general case, where $Z$ is not required to be equidimensional. In that case, let $Z$ be a possibly singular variety of dimension $n$, which may be neither irreducible nor equidimensional, embedded into $\mathbb P^r$, where $r\geq n+1$, and let $Y$ be a proper subvariety of dimension $k\geq1$. Consider now $S$ being a component of maximal dimension of the closure of $\{l \in\mathbb G(1,r)\mid\exists p\in Y,\ q_1,q_2\in Z\setminus Y,q_1,q_2,p\in l\}$. We show that $S$ has dimension strictly less than $n+k$, unless the union of lines in $S$ has dimension $n+1$, in which case $\dim S=n+k$. In the latter case, if the dimension of the space is strictly greater than $n+1$, then the union of lines in $S$ cannot cover the whole space. This is the main result of our paper. We also introduce some examples showing that our bound is strict.
@article{FPM_2006_12_2_a4,
     author = {J. Y. Kaminski and A. Ya. Kanel-Belov and M. Teicher},
     title = {Trisecant lemma for nonequidimensional varieties},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {71--87},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a4/}
}
TY  - JOUR
AU  - J. Y. Kaminski
AU  - A. Ya. Kanel-Belov
AU  - M. Teicher
TI  - Trisecant lemma for nonequidimensional varieties
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 71
EP  - 87
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a4/
LA  - ru
ID  - FPM_2006_12_2_a4
ER  - 
%0 Journal Article
%A J. Y. Kaminski
%A A. Ya. Kanel-Belov
%A M. Teicher
%T Trisecant lemma for nonequidimensional varieties
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 71-87
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a4/
%G ru
%F FPM_2006_12_2_a4
J. Y. Kaminski; A. Ya. Kanel-Belov; M. Teicher. Trisecant lemma for nonequidimensional varieties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 71-87. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a4/

[1] Shafarevich I. R., Osnovy algebraicheskoi geometrii, 1, Nauka, M., 1988 | MR

[2] Adlansvik B., “Joins and higher secant varieties”, Math. Scand., 61 (1987), 213–222 | MR

[3] Adlansvik B., “Varieties with extremal number of degenerate higher secant varieties”, J. Reine Angew. Math., 392 (1988), 16–26 | DOI | MR

[4] Barnabei M., Brini A., Rota G. C., “On the exterior calculus of invariant theory”, J. Algebra, 96 (1985), 120–160 | DOI | MR | Zbl

[5] Flenner H., O'Carroll L., Vogel W., Joins and Intersections, Springer, 1999 | MR

[6] Harris J., Algebraic Geometry, Springer, 1992 | MR

[7] Hartshorne R., Algebraic Geometry, Springer, 1997 | MR | Zbl

[8] Laudal O. A., “A generalized trisecant lemma”, Algebraic Geometry Proc., Lect. Notes Math., 687, Springer, 1977

[9] Liu Q., Algebraic Geometry and Arithmetic Curves, Oxford University Press, 2002 | MR

[10] Ran Z., “The $(dimension+2)$-secant lemma”, Invent. Math., 106 (1991), 65–71 | DOI | MR | Zbl

[11] Zak F., Tangents and Secants of Algebraic Varieties, Amer. Math. Soc., Providence, 1992 | MR | Zbl