Trisecant lemma for nonequidimensional varieties
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 71-87
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be an irreducible projective variety over an algebraically closed field of characteristic zero. For $r \geq3$, if every $(r-2)$-plane $\overline{x_1,\dots,x_{r-1}}$, where the $x_i$ are generic points, also meets $X$ in a point $x_r$ different from $x_1,\dots,x_{r-1}$, then $X$ is contained in a linear subspace $L$ such that $\operatorname{codim}_L X \leq r-2$. In this paper, our purpose is to present another derivation of this result for $r=3$ and then to introduce a generalization to nonequidimensional varieties. For the sake of clarity, we shall reformulate our problem as follows. Let $Z$ be an equidimensional variety (maybe singular and/or reducible) of dimension $n$, other than a linear space, embedded into $\mathbb P^r$, where $r \geq n+1$. The variety of trisecant lines of $Z$, say $V_{1,3}(Z)$, has dimension strictly less than $2n$, unless $Z$ is included in an $(n+1)$-dimensional linear space and has degree at least 3, in which case $\dim V_{1,3}(Z) = 2n$. This also implies that if $\dim V_{1,3}(Z)=2n$, then $Z$ can be embedded in $\mathbb P^{n+1}$. Then we inquire the more general case, where $Z$ is not required to be equidimensional. In that case, let $Z$ be a possibly singular variety of dimension $n$, which may be neither irreducible nor equidimensional, embedded into $\mathbb P^r$, where $r\geq n+1$, and let $Y$ be a proper subvariety of dimension $k\geq1$. Consider now $S$ being a component of maximal dimension of the closure of $\{l \in\mathbb G(1,r)\mid\exists p\in Y,\ q_1,q_2\in Z\setminus Y,q_1,q_2,p\in l\}$. We show that $S$ has dimension strictly less than $n+k$, unless the union of lines in $S$ has dimension $n+1$, in which case $\dim S=n+k$. In the latter case, if the dimension of the space is strictly greater than $n+1$, then the union of lines in $S$ cannot cover the whole space. This is the main result of our paper. We also introduce some examples showing that our bound is strict.
@article{FPM_2006_12_2_a4,
author = {J. Y. Kaminski and A. Ya. Kanel-Belov and M. Teicher},
title = {Trisecant lemma for nonequidimensional varieties},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {71--87},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a4/}
}
TY - JOUR AU - J. Y. Kaminski AU - A. Ya. Kanel-Belov AU - M. Teicher TI - Trisecant lemma for nonequidimensional varieties JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 71 EP - 87 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a4/ LA - ru ID - FPM_2006_12_2_a4 ER -
J. Y. Kaminski; A. Ya. Kanel-Belov; M. Teicher. Trisecant lemma for nonequidimensional varieties. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 71-87. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a4/