Almost completely decomposable groups with primary regulator quotients and their endomorphism rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 17-38

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a block-rigid almost completely decomposable group of ring type with regulator $A$ and $p$-primary regulator quotient $X/A$ such that $p^l=\exp X/A$ with natural $l>1$. From the well-known fact $p^l\operatorname{End}A\subset\operatorname{End}X\subset\operatorname{End}A$ it follows that $\operatorname{End}X=\operatorname{End}X\cap\operatorname{End}A$ and $p^l\operatorname{End}A=\operatorname{End}X\cap p^l\operatorname{End}A$. Generalizing these, we determine the chain $\operatorname{End}X=\mathcal E_A^{(l)}\subset\mathcal E_A^{(l-1)}\subset\mathcal E_A^{(l-2)}\subset\dots\subset\mathcal E_A^{(1)}\subset\mathcal E_A^{(0)}=\operatorname{End}A$, satisfying $p^{l-k}\mathcal E_A^{({k})}=\operatorname{End}X\cap p^{l-k}\operatorname{End}A$, and construct groups $X'_k$ and $\widetilde{X_k}$ such that $\mathcal E_A^{({k})}=\operatorname{Hom}(X'_k,\widetilde{X_k})$, where $k=1,2,\dots,l-1$.
@article{FPM_2006_12_2_a1,
     author = {E. A. Blagoveshchenskaya},
     title = {Almost completely decomposable groups with primary regulator quotients and their endomorphism rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {17--38},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a1/}
}
TY  - JOUR
AU  - E. A. Blagoveshchenskaya
TI  - Almost completely decomposable groups with primary regulator quotients and their endomorphism rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 17
EP  - 38
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a1/
LA  - ru
ID  - FPM_2006_12_2_a1
ER  - 
%0 Journal Article
%A E. A. Blagoveshchenskaya
%T Almost completely decomposable groups with primary regulator quotients and their endomorphism rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 17-38
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a1/
%G ru
%F FPM_2006_12_2_a1
E. A. Blagoveshchenskaya. Almost completely decomposable groups with primary regulator quotients and their endomorphism rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 17-38. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a1/