Almost completely decomposable groups with primary regulator quotients and their endomorphism rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 17-38
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a block-rigid almost completely decomposable group of ring type with regulator $A$ and $p$-primary regulator quotient $X/A$ such that $p^l=\exp X/A$ with natural $l>1$. From the well-known fact $p^l\operatorname{End}A\subset\operatorname{End}X\subset\operatorname{End}A$ it follows that $\operatorname{End}X=\operatorname{End}X\cap\operatorname{End}A$ and $p^l\operatorname{End}A=\operatorname{End}X\cap p^l\operatorname{End}A$. Generalizing these, we determine the chain $\operatorname{End}X=\mathcal E_A^{(l)}\subset\mathcal E_A^{(l-1)}\subset\mathcal E_A^{(l-2)}\subset\dots\subset\mathcal E_A^{(1)}\subset\mathcal E_A^{(0)}=\operatorname{End}A$, satisfying $p^{l-k}\mathcal E_A^{({k})}=\operatorname{End}X\cap p^{l-k}\operatorname{End}A$, and construct groups $X'_k$ and $\widetilde{X_k}$ such that $\mathcal E_A^{({k})}=\operatorname{Hom}(X'_k,\widetilde{X_k})$, where $k=1,2,\dots,l-1$.
@article{FPM_2006_12_2_a1,
author = {E. A. Blagoveshchenskaya},
title = {Almost completely decomposable groups with primary regulator quotients and their endomorphism rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {17--38},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a1/}
}
TY - JOUR AU - E. A. Blagoveshchenskaya TI - Almost completely decomposable groups with primary regulator quotients and their endomorphism rings JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 17 EP - 38 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a1/ LA - ru ID - FPM_2006_12_2_a1 ER -
%0 Journal Article %A E. A. Blagoveshchenskaya %T Almost completely decomposable groups with primary regulator quotients and their endomorphism rings %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 17-38 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a1/ %G ru %F FPM_2006_12_2_a1
E. A. Blagoveshchenskaya. Almost completely decomposable groups with primary regulator quotients and their endomorphism rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 2, pp. 17-38. http://geodesic.mathdoc.fr/item/FPM_2006_12_2_a1/