Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_1_a9, author = {J. L. Cieslinski}, title = {Discretization of multidimensional submanifolds associated with {Spin-valued} spectral problems}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {253--262}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a9/} }
TY - JOUR AU - J. L. Cieslinski TI - Discretization of multidimensional submanifolds associated with Spin-valued spectral problems JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 253 EP - 262 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a9/ LA - ru ID - FPM_2006_12_1_a9 ER -
J. L. Cieslinski. Discretization of multidimensional submanifolds associated with Spin-valued spectral problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 253-262. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a9/
[1] Aminov Yu. A., “Pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, DAN SSSR, 236 (1977), 521–524 | MR | Zbl
[2] Aminov Yu. A., “Izometricheskie pogruzheniya oblastei $n$-mernogo prostranstva Lobachevskogo v $(2n-1)$-mernoe evklidovo prostranstvo”, Mat. sb., 111 (153) (1980), 402–433 | MR | Zbl
[3] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[4] Keslinski Ya. L., “Geometriya podmnogoobrazii, poluchennykh iz Spin-znachnykh spektralnykh zadach”, Teor. i matem. fiz., 137:1 (2003), 47–58 | MR
[5] Ablowitz M. J., Beals R., Tenenblat K., “On the solution of the generalized wave and generalized sine-Gordon equations”, Stud. Appl. Math., 74 (1986), 177–203 | MR | Zbl
[6] Ahlfors L. V., Complex Analysis, ed. McGraw-Hill, New York, 1953 | MR
[7] Biernacki W., Cieśliński J. L., “A compact form of the Darboux–Bäcklund transformation for some spectral problems in Clifford algebras”, Phys. Lett. A, 288 (2001), 167–172 | DOI | MR | Zbl
[8] Bobenko A., “Discrete conformal maps and surfaces”, Symmetries and Integrability of Difference Equations, eds. A. Clarkson, F. Nijhoff, Cambridge Univ. Press, Cambridge, 1999, 97–108 | MR | Zbl
[9] Bobenko A. I., Matthes D., Suris Yu. B., “Discrete and smooth orthogonal systems: $C^\infty$-approximation”, Internat. Math. Res. Notices, 2003, no. 45, 2415–2459 | DOI | MR | Zbl
[10] Bobenko A. I., Pinkall U., “Discrete isothermic surfaces”, J. Reine Angew. Math., 475 (1996), 187–208 | DOI | MR | Zbl
[11] Bobenko A. I., Pinkall U., “Discrete surfaces with constant negative Gaussian curvature and the Hirota equation”, J. Differential Geom., 43 (1996), 527–611 | MR | Zbl
[12] Bobenko A. I., Pinkall U., “iscretization of surfaces and integrable systems”, Discrete Integrable Geometry and Physics, eds. A. I. Bobenko, R. Seiler, Oxford Univ. Press, Oxford, 1999, 3–58 | MR | Zbl
[13] Brück M., Du X., Park J., Terng C. L., The submanifold geometries associated to Grassmanian systems, , 2000 arXiv: math.DG/0006216 | MR
[14] Cieśliński J., “A generalized formula for integrable classes of surfaces in Lie algebras”, J. Math. Phys., 38 (1997), 4255–4272 | DOI | MR | Zbl
[15] Cieśliński J., “The cross ratio and Clifford algebras”, Adv. Appl. Clifford Algebras, 7 (1997), 133–139 | DOI | MR | Zbl
[16] Cieśliński J., “The spectral interpretaton of $n$-spaces of constant negative curvature immersed in $\mathbb R^{2n-1}$”, Phys. Lett. A, 236 (1997), 425–430 | DOI | MR | Zbl
[17] Cieśliński J., “The Bäcklund transformation for discrete isothermic surfaces”, Symmetries and Integrability of Difference Equations, eds. P. A. Clarkson, F. Nijhoff, Cambridge Univ. Press, Cambridge, 1999, 109–121 | MR | Zbl
[18] Cieśliński J. L., “A class of linear spectral problems in Clifford algebras”, Phys. Lett. A, 267 (2000), 251–255 | DOI | MR | Zbl
[19] Cieśliński J. L., “How isothermic surfaces helped to understand other integrable systems”, Rend. Sem. Mat. Messina, Supplement Atti del Congresso Internazionale in onore di Pasquale Calapso (2000), 135–147 | Zbl
[20] Cieśliński J., Doliwa A., Santini P. M., “The integrable discrete analogues of orthogonal coordinate systems are multidimensional circular lattices”, Phys. Lett. A, 235 (1997), 480–488 | DOI | MR | Zbl
[21] Doliwa A., “Integrable multidimensional discrete geometry”, Integrable Hierarchies and Modern Physical Theories, eds. H. Aratyn, A. S. Sorin, Kluwer Academic, 2001, 355–389 | MR | Zbl
[22] Doliwa A., Santini P. M., “Multidimensional quadrilateral lattices are integrable”, Phys. Lett. A, 233 (1997), 365–372 | DOI | MR | Zbl
[23] Doliwa A., Santini P. M., Mañas M., “Transformations of quadrilateral lattices”, J. Math. Phys., 41 (2000), 944–990 | DOI | MR | Zbl
[24] Eisenhart L. P., Transformations of Surfaces, Princeton Univ. Press, 1923 | Zbl
[25] Eisenhart L. P., A Treatise on the Differential Geometry of Curves and Surfaces, Dover, New York, 1960 | MR
[26] Ferus D., Pedit F., “Curved flats in symmetric spaces”, Manuscripta Math., 91 (1996), 445–454 | DOI | MR | Zbl
[27] Hertrich-Jeromin U., “On conformally flat hypersurfaces and Guichard's nets”, Beitr. Algebra Geom., 35 (1994), 315–331 | MR | Zbl
[28] Lectures on Clifford (Geometric) Algebras and Applications, eds. R. Abamowicz, G. Sobczyk, Birkhäuser, Boston, 2004 | MR
[29] Lounesto P., Clifford Algebras and Spinors. Second edition, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[30] Rogers C., Schief W. K., Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Univ. Press, Cambridge, 2002 | MR
[31] Sauer R., Differenzengeometrie, Springer, Berlin, 1970 | MR
[32] Schief W. K., “Isothermic surfaces in spaces of arbitrary dimension: Integrability, discretization and Bäcklund transformations. A discrete Calapso equation”, Stud. Appl. Math., 106 (2001), 85–137 | DOI | MR | Zbl
[33] Sym A., “Soliton surfaces”, Lett. Nuovo Cimento, 33, 1982, 394–400 | MR
[34] Sym A., “Soliton surfaces and their application. Soliton geometry from spectral problems Geometric Aspects of the Einstein Equations and Integrable Systems”, Lect. Notes Phys., 239, ed. R. Martini, Springer, Berlin, 1985, 154–231 | MR
[35] Tenenblat K., Terng C. L., “Bäcklund theorem for $n$-dimensional submanifolds of $\mathbb R^{2n-1}$”, Ann. Math., 111 (1980), 477–490 | DOI | MR | Zbl
[36] Wunderlich W., “Zur Differenzengeometrie der Flächen konstanter negativer Krümmung”, Sitzungsber. Ak. Wiss., 160 (1951), 39–77 | MR | Zbl