Discretization of multidimensional submanifolds associated with Spin-valued spectral problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 253-262

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a large family of $\mathrm{Spin}(p,q)$-valued discrete spectral problems. The associated discrete nets generated by the so called Sym–Tafel formula are circular nets (i.e., all elementary quadrilaterals are inscribed into circles). These nets are discrete analogues of smooth multidimensional immersions in $\mathbb R^m$ including isothermic surfaces, Guichard nets, and some other families of orthogonal nets.
@article{FPM_2006_12_1_a9,
     author = {J. L. Cieslinski},
     title = {Discretization of multidimensional submanifolds associated with {Spin-valued} spectral problems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {253--262},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a9/}
}
TY  - JOUR
AU  - J. L. Cieslinski
TI  - Discretization of multidimensional submanifolds associated with Spin-valued spectral problems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 253
EP  - 262
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a9/
LA  - ru
ID  - FPM_2006_12_1_a9
ER  - 
%0 Journal Article
%A J. L. Cieslinski
%T Discretization of multidimensional submanifolds associated with Spin-valued spectral problems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 253-262
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a9/
%G ru
%F FPM_2006_12_1_a9
J. L. Cieslinski. Discretization of multidimensional submanifolds associated with Spin-valued spectral problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 253-262. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a9/