Discretization of multidimensional submanifolds associated with Spin-valued spectral problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 253-262
Voir la notice de l'article provenant de la source Math-Net.Ru
We present a large family of $\mathrm{Spin}(p,q)$-valued discrete spectral problems. The associated discrete nets generated by the so called Sym–Tafel formula are circular nets (i.e., all elementary quadrilaterals are inscribed into circles). These nets are discrete analogues of smooth multidimensional immersions in $\mathbb R^m$ including isothermic surfaces, Guichard nets, and some other families of orthogonal nets.
@article{FPM_2006_12_1_a9,
author = {J. L. Cieslinski},
title = {Discretization of multidimensional submanifolds associated with {Spin-valued} spectral problems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {253--262},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a9/}
}
TY - JOUR AU - J. L. Cieslinski TI - Discretization of multidimensional submanifolds associated with Spin-valued spectral problems JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 253 EP - 262 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a9/ LA - ru ID - FPM_2006_12_1_a9 ER -
J. L. Cieslinski. Discretization of multidimensional submanifolds associated with Spin-valued spectral problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 253-262. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a9/