Some properties of rigidity mapping
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 129-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

The bounds of minimal rank of differential of rigidity mapping are obtained. They depend on the structural scheme and on the positions of fastened points. Two hypotheses are introduced. One about presence in the set of minimal rank of the rigidity mapping of a construction with a zero length lever. Another–about unboundedness of the sets of a constant rank of the rigidity mapping in the case of their positive dimension. In some cases these hypotheses are proved.
@article{FPM_2006_12_1_a3,
     author = {M. D. Kovalev},
     title = {Some properties of rigidity mapping},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {129--142},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a3/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - Some properties of rigidity mapping
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 129
EP  - 142
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a3/
LA  - ru
ID  - FPM_2006_12_1_a3
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T Some properties of rigidity mapping
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 129-142
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a3/
%G ru
%F FPM_2006_12_1_a3
M. D. Kovalev. Some properties of rigidity mapping. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 129-142. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a3/

[1] Kovalëv M. D., “Geometricheskaya teoriya sharnirnykh ustroistv”, Izv. RAN SSSR. Ser. mat., 58:r1 (1994), 45–70 | Zbl

[2] Kovalëv M. D., “Kvadratichnye i rychazhnye otobrazheniya”, Tr. MIRAN im. V. A. Steklova, 239, 2002, 195–214 | MR | Zbl

[3] Kovalëv M. D., “O raspryamlënnykh sharnirnykh konstruktsiyakh”, Mat. sb., 195:6 (2004), 71–98 | MR | Zbl

[4] Kovalëv M. D., “Zadacha o minimalnom range rychazhnogo otobrazheniya”, Sovremennye estestvenno-nauchnye i gumanitarnye problemy, Sb. trudov nauchno-metodicheskoi konferentsii, posvyaschënnoi 40-letiyu NUK FN MGTU im. N. E. Baumana, Logos, 2005, 317–323

[5] Alexandrov V., “Sufficient conditions for the extendibility of an $n$-th order flex of polyhedra”, Contrib. Algebra Geom., 39:2 (1998), 367–378 | MR | Zbl

[6] Connelly R., Demaine E. D., Rote G., “Straightening polygonal arcs and convexifying polygonal cycles”, Discrete Comput. Geom., 30:2 (2003), 205–239 | MR | Zbl

[7] Crapo H., Whiteley W., “Statics of frameworks and motions of panel structures, a projective geometric introduction”, Structural Topology, 1982, no. 6, 43–82 | MR

[8] Graver J., Servatius B., Servatius H., Combinatorial Rigidity, Amer. Math. Soc., Providence, 1993 | MR | Zbl

[9] Kapovich M., Millson J. J., Universality theorems for configuration spaces of planar linkages, Preprint. March 23, 1998 | MR

[10] Laman G., “On graphs and rigidity of plane skeletal structures”, J. Engrg. Math., 4 (1970), 331–340 | DOI | MR | Zbl

[11] Pollaczek-Geiringer H., “Über die Gliederung ebener Fuchwerke”, Z. Angew. Math. Mech., 7:1 (1927), 58–72 | DOI | Zbl

[12] Veblen O., Young J. W., Projective Geometry, vols. 1, 2, Boston, 1910–1918 | Zbl

[13] White N., Whiteley W., “The algebraic geometry of stresses in frameworks”, SIAM J. Algebraic Discrete Methods, 4:4 (1983), 481–511 | DOI | MR | Zbl