Canonical decompositions of piecewise affine mappings, polyhedra-traces, and geometrical variational problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 57-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, canonical decompositions of arbitrary piecewise affine mappings are constructed. Then the equivalence of these mappings is introduced and the concept of polyhedron-trace is defined as an equivalence class. Finally, the concepts of the volume and the deformation of polyhedra-traces are introduced, the continuity of the volume is proved, and the formula of first variation is obtained. These concepts give an analog of the Plateau principles.
@article{FPM_2006_12_1_a1,
     author = {N. S. Gusev},
     title = {Canonical decompositions of piecewise affine mappings, polyhedra-traces, and geometrical variational problems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {57--94},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a1/}
}
TY  - JOUR
AU  - N. S. Gusev
TI  - Canonical decompositions of piecewise affine mappings, polyhedra-traces, and geometrical variational problems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 57
EP  - 94
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a1/
LA  - ru
ID  - FPM_2006_12_1_a1
ER  - 
%0 Journal Article
%A N. S. Gusev
%T Canonical decompositions of piecewise affine mappings, polyhedra-traces, and geometrical variational problems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 57-94
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a1/
%G ru
%F FPM_2006_12_1_a1
N. S. Gusev. Canonical decompositions of piecewise affine mappings, polyhedra-traces, and geometrical variational problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 1, pp. 57-94. http://geodesic.mathdoc.fr/item/FPM_2006_12_1_a1/

[1] Gusev N. S., “Kusochno-affinnye pogruzheniya mnogougolnikov i ikh granitsy”, Diskretnaya matematika i eë prilozheniya, Materialy VIII Mezhdunarodnogo seminara (2–6 fevralya 2004), Izd-vo mekhaniko-matematicheskogo fakulteta, MGU im. M. V. Lomonosova, M., 2004, 390–392

[2] Dao Chong Tkhi, “Multivarifoldy i klassicheskie mnogomernye zadachi Plato”, Izv. AN SSSR. Ser. mat., 44:5 (1980), 1031–1065 | MR | Zbl

[3] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, Uspekhi mat. nauk., 47:2 (1992), 53–115 | MR | Zbl

[4] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, Izhevsk Institut kompyuternykh issledovanii, M., 2003

[5] Ivanov A. O., Tuzhilin A. A., Pogruzhënnye mnogougolniki i ikh diagonalnye triangulyatsii, V pechati

[6] Rurk K., Sanderson B., Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974 | MR

[7] Fomenko A. T., Variatsionnye metody v topologii, Nauka, M., 1982 | MR

[8] Fomenko A. T., Topologicheskie variatsionnye zadachi, Izd-vo Mosk. un-ta, 1984 | MR | Zbl

[9] Almgren F. J., “Existence and regularity almost everywhere of solutions to elliptic variational problem among surfaces of topological type and singularity structure”, Ann. Math., 87:2 (1968), 321–391 | DOI | MR | Zbl

[10] Du D. Z., Hwang F. K., “A proof of Gilbert–Pollak conjecture on the Steiner ratio”, Algorithmica, 7 (1992), 121–135 | DOI | MR | Zbl

[11] Federer H., Fleming W. H., “Normal and integral currents”, Ann. Math., 72 (1960), 458–520 | DOI | MR | Zbl

[12] Gilbert E. N., Pollak H. O., “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl

[13] Reifenberg E. R., “Solution of the Plateau problem for $m$-dimensional surfaces of varying topological type”, Acta Math., 104 (1960), 1–92 | DOI | MR | Zbl