Optimization of the proportional navigation law with time delay
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 139-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

The controlled relative motion of spacecraft nearby an orbital station is considered. The rendezvous method used at the active spacecraft is an algorithm of proportional navigation which is realized with some constant time delay. The coefficient of the law of guidance is considered to be the control variable, a step time function. The problem of choice of the mentioned coefficient which provides a minimum of the rendezvous time is analyzed. It turns out that the optimal solution includes both boundary and intermediate control values. The results of computer simulation are given.
@article{FPM_2005_11_8_a7,
     author = {E. S. Manuilovich and O. Yu. Cherkasov},
     title = {Optimization of the proportional navigation law with time delay},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {139--147},
     publisher = {mathdoc},
     volume = {11},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a7/}
}
TY  - JOUR
AU  - E. S. Manuilovich
AU  - O. Yu. Cherkasov
TI  - Optimization of the proportional navigation law with time delay
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 139
EP  - 147
VL  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a7/
LA  - ru
ID  - FPM_2005_11_8_a7
ER  - 
%0 Journal Article
%A E. S. Manuilovich
%A O. Yu. Cherkasov
%T Optimization of the proportional navigation law with time delay
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 139-147
%V 11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a7/
%G ru
%F FPM_2005_11_8_a7
E. S. Manuilovich; O. Yu. Cherkasov. Optimization of the proportional navigation law with time delay. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 139-147. http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a7/

[1] Aleksandrov V. V., Boltyanskii V. G., Lemak S. S., Parusnikov N. A., Tikhomirov V. M., Optimizatsiya dinamiki upravlyaemykh sistem, Izd-vo Mosk. un-ta, M., 2000 | Zbl

[2] Braison A., Kho Yu-Shi., Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972

[3] Kan V. L., Kelzon A. S., Teoriya proportsionalnoi navigatsii, Sudostroenie, L., 1965 | Zbl

[4] Kotrell R., “Optimalnoe navedenie pri perekhvate dlya takticheskikh snaryadov maloi dalnosti”, Raketnaya tekhnika i kosmonavtika, 9:7 (1971)

[5] Lokk A. S., Upravlenie snaryadami, Fizmatgiz, M., 1960

[6] Shinar Dzh., Rottshtein I., Bezner E., “Issledovaniya optimalnogo prostranstvennogo ukhoda ot presledovatelya, opisyvaemogo linearizovannymi uravneniyami kinematiki”, Raketnaya tekhnika i kosmonavtika, 1979, no. 12, 143–152

[7] Ben-Asher J., Cliff E. M., Kelley H. J., “Optimal evasion with a path-angle constraint and against two pursuers”, J. Guidance Control Dynam., 11 (1988), 300–304 | DOI | MR | Zbl

[8] Guelman M., “The closed-form solution of true proportional navigation”, IEEE Trans. Aerospace Electron. Systems, 12:4 (1976), 472–482 | DOI | MR

[9] Guelman M., “Guidance for asteroid rendezvous”, J. Guidance Control Dynam., 14 (1991), 1080–1083 | DOI

[10] Slater G. L., Wells W. R., “Optimal evasive tactics against a proportional navigation missile with time delay”, J. Spacecraft Rockets, 1973, no. 10, 309–313 | DOI

[11] Yang C. D., Yeh F. B., “Optimal proportional navigation”, J. Guidance Control Dynam., 11 (1988), 375–377 | DOI | MR

[12] Yuan P. J., Hsu S. C., “Rendezvous guidance with proportional navigation”, J. Guidance Control Dynam., 17 (1994), 409–411 | DOI