Observability with bearing-only observations and smoothness of attainable set
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 119-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

The attainable set of a linear control system can have both smooth and not smooth boundary. This smoothness property is known to be used to classify such systems. One approach, suggested by A. I. Ovseevich in the case of a smooth control set, is based on connecting smoothness of the attainable set with spherical observability of the dual system. This paper generalizes these results to a case of nonsmooth control sets. The corresponding property of spherical observability notion can be treated as observability with several bearing-only observations.
@article{FPM_2005_11_8_a5,
     author = {Yu. V. Bolotin and S. N. Morgunova},
     title = {Observability with bearing-only observations and smoothness of attainable set},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {119--130},
     publisher = {mathdoc},
     volume = {11},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a5/}
}
TY  - JOUR
AU  - Yu. V. Bolotin
AU  - S. N. Morgunova
TI  - Observability with bearing-only observations and smoothness of attainable set
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 119
EP  - 130
VL  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a5/
LA  - ru
ID  - FPM_2005_11_8_a5
ER  - 
%0 Journal Article
%A Yu. V. Bolotin
%A S. N. Morgunova
%T Observability with bearing-only observations and smoothness of attainable set
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 119-130
%V 11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a5/
%G ru
%F FPM_2005_11_8_a5
Yu. V. Bolotin; S. N. Morgunova. Observability with bearing-only observations and smoothness of attainable set. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 119-130. http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a5/

[1] Aleksandrov V. V., Boltyanskii V. G., Lemak S. S., Parusnikov N. A., Tikhomirov V. M., Optimizatsiya dinamiki upravlyaemykh sistem, Izd-vo Mosk. un-ta, M., 2000 | Zbl

[2] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1978

[3] Atans M., Falb P., Optimalnoe upravlenie, Mashinostroenie, M., 1968

[4] Bolotin Yu. V., “Obobschennyi metod naimenshikh kvadratov v zadache otsenivaniya po uglovym izmereniyam”, Avtomatika i telemekhanika, 1997, no. 2

[5] Bolotin Yu. V., Morgunova S. N., “O nablyudaemosti mekhanicheskikh sistem po uglovym izmereniyam”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2000, no. 3

[6] Li E., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR

[7] Ovseevich A. I., “Osobennosti granits oblasti dostizhimosti i zadachi nablyudaemosti”, Tezisy 5-i Vserossiiskoi shkoly “Matematicheskie metody navigatsii”, MGU, M., 1994

[8] Formalskii A. M., Upravlyaemost i ustoichivost sistem s ogranichennymi resursami, Nauka, M., 1974 | MR

[9] Aidala V. J., Nardone S. C., “Biased estimation properties of the pseudolinear tracking filter”, IEEE Trans. Aerospace Electron. Systems, 18:4 (1982), 432–441 | DOI

[10] Bolotin Yu. V., “A TLS approach to angle-only trajectory estimation”, IEEE Workshop on Real Time Computing, Prague, 1994 | Zbl

[11] Nardone S. C., Aidala V. J., “Observability criteria for bearings-only target motion analysis”, IEEE Trans. Aerospace Electron. Systems, 17:2 (1981), 162–166 | DOI | MR

[12] Payne A. N., “Observability problem for bearing-only tracking”, Internat. J. Control, 49:3 (1989), 761–768 | MR | Zbl