Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_8_a12, author = {N. V. Kulikovskaya and V. I. Kurilov and S. A. Davydkin}, title = {A~mathematical model of information transfer in the ribbon synapses}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {205--221}, publisher = {mathdoc}, volume = {11}, number = {8}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a12/} }
TY - JOUR AU - N. V. Kulikovskaya AU - V. I. Kurilov AU - S. A. Davydkin TI - A~mathematical model of information transfer in the ribbon synapses JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 205 EP - 221 VL - 11 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a12/ LA - ru ID - FPM_2005_11_8_a12 ER -
%0 Journal Article %A N. V. Kulikovskaya %A V. I. Kurilov %A S. A. Davydkin %T A~mathematical model of information transfer in the ribbon synapses %J Fundamentalʹnaâ i prikladnaâ matematika %D 2005 %P 205-221 %V 11 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a12/ %G ru %F FPM_2005_11_8_a12
N. V. Kulikovskaya; V. I. Kurilov; S. A. Davydkin. A~mathematical model of information transfer in the ribbon synapses. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 205-221. http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a12/
[1] Alberts B., Brei D., Lyuis Dzh., Reff M., Roberts K., Uotson Dzh., Molekulyarnaya biologiya kletki, Mir, M., 1994
[2] Aleksandrov V. V., Aleksandrova T. B., Astakhova T. G., Yakushev A. G., Soto E., “Uravneniya dinamiki kupulo-endolimfaticheskoi sistemy polukruzhnogo kanala”, Differents. uravn., 35:4 (1999), 1–6 | MR
[3] Aleksandrov V. V., Astakhova T. G., Trincher V. K., “Matematicheskoe modelirovanie funktsii vestibulyarnogo kanala”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1999, no. 5, 72–76
[4] Sadovnichii V. A., Aleksandrov V. V., Aleksandrova T. B., Almanza A., Astakhova T. G., Vega R., Kulikovskaya N. V., Soto E., Shulenina N. E., “Matematicheskaya model mekhanoretseptora uglovykh uskorenii”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2002, no. 6, 46–54 | MR | Zbl
[5] Alexandrov V. V., Almanza A., Kulikovskaya N. V., Vega R., Alexandrova T. B., Shulenina N. E., Limon A., Soto E., “A mathematical model of the total current dynamics in hair cells”, Mathematical Modeling of Complex Information Processing Systems, Moscow University Press, 2001, 26–41
[6] Beutner D., Voets T., Neher E., Moser T., “Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse”, Neuron, 29 (2001), 681–690 | DOI
[7] Borges S., Gleason E., Turelli M., Wilson M., “The kinetics of quantal transmitter release from retinal amacrine cells”, Proc. Nat. Acad. Sci. USA, 92 (1995), 6896–6900 | DOI
[8] Boyle R., Carey J. P., Highstein S. M., “Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus tau”, J. Neurophysiol, 66 (1991), 1504–1521
[9] Boyle R., Highstein S. M., “Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau”, J. Neurosci., 10 (1990), 1557–1569
[10] Von Gersdorff H., “Synaptic ribbons: Versatile signal transducers”, Neuron, 29 (2001), 7–10 | DOI
[11] Von Gersdorff H., Matthews G., “Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals”, Nature, 367 (1994), 735–739 | DOI
[12] Von Gersdorff H., Matthews G., “Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal”, J. Neurosci., 17 (1997), 1919–1927
[13] Von Gersdorff H., Sakaba T., Berglund K., Tachibana M., “Submillisecond kinetics of glutamate release from a sensory synapse”, Neuron, 21 (1998), 1177–1188 | DOI
[14] Von Gersdorff H., Vardi E., Matthews G., Sterling P., “Evidence that vesicles on the synaptic ribbon or retinal bipolar neurons can be rapidly released”, Neuron, 16 (1996), 1221–1227 | DOI
[15] Goldberg J. M., Fernandez C., “Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I: Resting discharge and response to constant angular accelerations”, J. Neurophysiol, 34 (1971), 635–660
[16] Goldberg J. M., Fernandez C., “Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III.: Variations among units in their discharge properties”, J. Neurophysiol, 34 (1971), 676–684
[17] Guth P. S., Perin P., Norris C. H., Valli P., “The vestibular hair cells: Post-transductional signal processing”, Progress in Neurobiology, 54 (1998), 193–247 | DOI
[18] Highstein S. M., Rabbitt R. D., Holstein G. R., Boyle R. D., “Determinants of spatial and temporal coding by semicircular canal afferents”, J. Neurophysiol, 93 (2005), 2359–2370 | DOI
[19] Lenzi D., Crum J., Ellisman M. H., Roberts W. M., “Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at ribbon synapse”, Neuron, 36 (2002), 649–659 | DOI
[20] Lenzi D., von Gersdorff H., “Structure suggests function: The case for synaptic ribbons as exocytotic nanomachines”, Bioessays, 23 (2001), 831–840 | DOI
[21] Lenzi D., Runyeon J. W., Crum J., Ellisman M. H., Roberts W. M., “Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography”, J. Neurosci., 19 (1999), 119–132
[22] Martinez-Dunst C., Michaels R. L., Fuchs P. A., “Release sites and calcium channels in hair cells of the chicks cochlea”, J. Neurosci., 17 (1997), 9133–9144
[23] Matthews G., “Synaptic mechanisms of bipolar cell terminals”, Vision Res., 39 (1999), 2469–2476 | DOI
[24] Parsons T. D., Lenzi D., Almers W., Roberts W. M., “Calcium triggered exocytosis and endocytosis in an isolated presynaptic cell: Capacitance measurement in saccular hair cells”, Neuron, 13 (1994), 875–883 | DOI
[25] Rabbitt R. D., Boyle R. D., Holstein G. R., Highstein S. M., “Hair-cell versus afferent adaptation in the semicircular canals”, J. Neurophysiol, 93 (2005), 424–436 | DOI
[26] Roberts W. M., Jacobs R. A., Hudspeth A. J., “Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells”, J. Neurosci., 10 (1990), 3664–3684
[27] Schmich R. M., Miller M. I., “Stochastic threshold characterization of the intensity of active channel dynamical action potential generation”, J. Neurophysiol, 78 (1997), 2616–2630
[28] Smith C. E., Goldberg J. M., “A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents”, Biol. Cybern., 54 (1986), 41–51 | DOI
[29] Soto E., Alexandrov V. V., Alexandrova T. B., Cruz R., Vega R., Astakhova T. G., “A mechanical coupling model for the axolotle (Ambystoma tigrinum) semicircular canal”, Mathematical Modeling of Complex Information processing Systems, Moscow University Press, 2001, 15–25
[30] Tachibana M., “Regulation of transmitter release from retinal bipolar cells”, Progress in Biophysics and Molecular Biology, 1999, 109–133 | DOI
[31] Zenisek B. J., Steye A., Almers W., “Transport, capture and exocytosis of single synaptic vesicles at active zones”, Nature, 406 (2000), 849–854 | DOI
[32] Zussa G., Botta L., Vall P., “Evidence for L-glutamate release in frog vestibular organs”, Hearing Research, 1992, 52–56