Virtual quadruped: mechanical design, control, simulation, and experimentation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 5-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a prototyped walking robot containing a platform and two double-link legs. Thus, it is a five-link mechanism. The front leg models identical motions of two quadruped's front legs, the back leg models identical motions of two quadruped's back legs. The legs have passive (uncontrolled) feet that extend in the frontal plane. Due to this the robot is stable in the frontal plane. This robot can be viewed as a “virtual” quadruped. Four DC motors drive the mechanism. Its control system comprises a computer, hardware servo-systems, and power amplifiers. The locomotion of the prototype is planar curvet gait. In the double support our prototype is statically stable and over actuated. In the single support it is unstable and under actuated system. There is no flight phase. We describe here the scheme of the mechanism, the characteristics of the drives and the control strategy. The dynamic model of the planar walking is recalled for the double and single support phases and for the impact instant. The experiments give results that are close to those of the simulation.
@article{FPM_2005_11_8_a1,
     author = {Y. Aoustin and A. M. Formal'sky and C. Chevallereau},
     title = {Virtual quadruped: mechanical design, control, simulation, and experimentation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--28},
     publisher = {mathdoc},
     volume = {11},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a1/}
}
TY  - JOUR
AU  - Y. Aoustin
AU  - A. M. Formal'sky
AU  - C. Chevallereau
TI  - Virtual quadruped: mechanical design, control, simulation, and experimentation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 5
EP  - 28
VL  - 11
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a1/
LA  - ru
ID  - FPM_2005_11_8_a1
ER  - 
%0 Journal Article
%A Y. Aoustin
%A A. M. Formal'sky
%A C. Chevallereau
%T Virtual quadruped: mechanical design, control, simulation, and experimentation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 5-28
%V 11
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a1/
%G ru
%F FPM_2005_11_8_a1
Y. Aoustin; A. M. Formal'sky; C. Chevallereau. Virtual quadruped: mechanical design, control, simulation, and experimentation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 8, pp. 5-28. http://geodesic.mathdoc.fr/item/FPM_2005_11_8_a1/

[1] Formalskii A. M., Peremeschenie antropomorfnykh mekhanizmov, Nauka, M., 1982

[2] Altendorfer R., Moore N., Komsuoglu H., Buehler M., Brown H. B., Jr., McMordie D., Saranli U., Full R., Koditschek D. E., “RHex: A biologically inspired hexapod runner”, J. Autonoumos Robots, 11 (2001), 207–213 | DOI | Zbl

[3] Aoustin Y., Formal'sky A. M., “Control strategy for dynamic locomotion design of walking quadruped”, Proc. IFAC Workshop, Motion Control 98, 1998, 401–407

[4] Aoustin Y., Formal'sky A. M., “Control design for a biped: Reference trajectory based on driven angles as functions of the undriven angle”, J. Comput. System Sci., 42:4 (2003), 159–176 | MR | Zbl

[5] Cham J., Bailey S. A., Cutkosky M. R., “Robust dynamic locomotion through feedforward-preflex interaction”, Proc. ASME Conf. Mechanical Engineers Congress and Exhibition, 2000

[6] Chevallereau C., Abba G., Aoustin Y., Plestan F., Westervelt A. R., Canudas de Wit C., Grizzle J. W., “Rabbit: A testbed for advanced control theory”, IEEE Control System Magazine, 23:5 (2003), 57–78 | DOI

[7] Conte G., Scaradozzi E., Suardi A., “Control architecture for a prototypal legged robot”, Proc. Clawar Conf., 2003, 127–134

[8] De Lasa M., Buehler M., “Dynamic compliant quadruped walking”, Proc. IEEE Conf. on Robotics and Automation, 2001, 21–26

[9] Estremera J., Garcia E., Gonzalez de Santos P., “A continuous free crab gait for quadruped robots on irregular terrain”, Proc. Int. Conf. on Climbing and Walking Robots (CLAWAR), 2003, 584–592

[10] Formal'sky A. M., “Ballistic locomotion of a biped. Design and control of two biped machines”, Human and Machine Locomotion, eds. A. Morecki, K. Waldron, CISM, Springer, Udine, 1997

[11] Formal'sky A. M., Chevallereau C., Perrin B., “On ballistic walking locomotion of a quadruped”, Internat. J. Robotics Res., 19:8 (2000), 743–761 | DOI

[12] Fukuoka Y., Kimura H., Cohen A. H., “Adaptative dynamic walking of a quadruped robot on irregular terrain based on biological concepts”, Internat. J. Robotics Res., 22:3–4 (2003), 187–202 | DOI

[13] Furusho J., Sano A., Sakaguchi M., Koizumi E., “Realization of bounce gait in a quadruped robot with articular-joint-type legs”, Proc. IEEE Conf. on Robotics and Automation, 1995, 697–702

[14] Gurfinkel V. S., Gurfinkel E. V., Shneider A. Y., Devjanin E. A., Lensky A. V., Shtilman L. G., “Walking robot with supervisory control”, Mechanisms Machines Theory, 16:2 (1981), 31–36 | DOI

[15] Hirai K., Hirose M., Haikawa Y., Takenaka T., “The development of Honda humanoid robot”, Proc. IEEE Conf. on Robotics and Automation, 1998, 1321–1326

[16] Hirose S., Kato K., “Study on quadruped walking robot in Tokyo Institute of Technology”, Proc. IEEE Conf. on Robotics and Automation, 2000, 414–419

[17] Hirose S., Yoneda K., “Toward development of practical quadruped walking vehicles”, J. Robotics Mechatronics, 5:6 (1993), 498–504

[18] Hong Y. S., Lee H. K., Yi S. Y., Lee C. W., “The design and control of a jointed-leg type of a quadrupedal robot for locomotion on irregular ground”, Robotica, 17:4 (1999), 383–389 | DOI

[19] Kaneko M., Abe M., Tanie K., “A hexapod walking machine with decoupled freedoms”, IEEE J. Robotics and Automation, 1:4 (1985), 183–190 | DOI

[20] Kimura H., Akiyama S., Sakurama K., “Realization of dynamic and running of the quadruped using neural oscillator”, J. Autonoumos Robots, 7 (1999), 247–258 | DOI

[21] Klein C. A., Briggs R. L., “Use of active compliance in the control of legged vehicles”, IEEE Trans. Systems Man Cybernet, 10:7 (2000), 393–400 | DOI

[22] Krupp B. T., “Preliminary control of a planar robot for quadrupedal locomotion research”, Proc. Int. Conf. on Climbing and Walking Robots (CLAWAR), 2003, 95–104

[23] Miura H., Shimoyama I., “Dynamic walk of a biped”, Internat. J. Robotics Res., 3:2 (1984), 60–74 | DOI | MR

[24] Muraro A., Chevallereau C., Aoustin Y., “Optimal trajectories for a quadruped robot with trot, amble and curvet gaits for two energetic criteria”, Multibody Syst. Dyn., 9:1 (2003), 39–62 | DOI | MR | Zbl

[25] Perrin B., Modelling and control of a quadruped for a dynamically stable gait, PhD Thesis, University of Nantes, 1999

[26] Poulakakis I., Smith J. A., Buehler M., “On the dynamics of bounding and extensions torwards the half-bound and the gallop gaits”, Proc. Int. Symp. on Adaptative Motion of Animals and Machines, Kyoto, 2003

[27] Pratt G. A., Williamson M. M., “Series elastic actuators”, Proc. IEEE Conf. on Intelligent Robots and Systems, 1995, 399–406

[28] Saranli U., Buehler M., Koditschek D. E., “Rhex: A simple and highly mobile hexapod robot”, Internat. J. Robotics Res., 20:7 (2001), 616–631 | DOI

[29] Sutherland I. E., Raibert M. H., “Machines that walk”, Scientific American, 248 (1983), 44–53

[30] Talebi S., Poulakakis G., Papadopoulos E., Buehler M., “Quadruped robot running with a bounding gait”, Experimental Robotics, VII, Lect. Notes Control Information Sci., 271, eds. D. Rus, S. Singh, 2001, 281–289

[31] Ting S. H., Blickhan R., Full R. F., “Dynamic and static stability in hexapedal runners”, J. Experimental Biology, 197 (1994), 251–269

[32] Vukobratovic M., Borovac B., Surla D., Stokic D., Biped Locomotion, Springer, 1990 | Zbl