Stability of rotation of a~vane in a~flow
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 7, pp. 73-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of investigation of stability of permanent rotation of a four-blade vane on a weightless rod in a flow of homogeneous medium are discussed. The rod rotates about a fixed point where a spherical joint is situated. The vane rotates about the second joint fixed at the other end of the rod. Stability of permanent rotation of the vane is studied when the rod coincides with the dynamic symmetry axis of the vane. The results are compared with the one-joint case. It is shown that increasing the number of degrees of freedom leads to “diminishing” the stability domain projection onto the corresponding subspace of parameters.
@article{FPM_2005_11_7_a7,
     author = {V. A. Privalov and O. G. Privalova},
     title = {Stability of rotation of a~vane in a~flow},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {73--95},
     publisher = {mathdoc},
     volume = {11},
     number = {7},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a7/}
}
TY  - JOUR
AU  - V. A. Privalov
AU  - O. G. Privalova
TI  - Stability of rotation of a~vane in a~flow
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 73
EP  - 95
VL  - 11
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a7/
LA  - ru
ID  - FPM_2005_11_7_a7
ER  - 
%0 Journal Article
%A V. A. Privalov
%A O. G. Privalova
%T Stability of rotation of a~vane in a~flow
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 73-95
%V 11
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a7/
%G ru
%F FPM_2005_11_7_a7
V. A. Privalov; O. G. Privalova. Stability of rotation of a~vane in a~flow. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 7, pp. 73-95. http://geodesic.mathdoc.fr/item/FPM_2005_11_7_a7/

[1] Guvernyuk S. V., Falunin M. P., Feschenko S. A., “Issledovanie dvizheniya vraschayuschegosya parashyuta”, Parashyuty i pronitsaemye tela, sb. statei, posvyaschënnyi 70-letiyu akad. AN Uzb. SSR Kh. A. Rakhmatulina, eds. O. V. Rysev, M. P. Falunin, Izd-vo Mosk. un-ta, M., 1980, 30–44

[2] Novozhilov I. V., Fraktsionnyi analiz, Izd-vo Mosk. un-ta, M., 1991 | MR

[3] Privalov V. A., Privalova O. G., Samsonov V. A., “O dinamike bumeranga”, Izv. RAN. MTT, 2003, no. 4, 52–65

[4] Privalov V. A., Samsonov V. A., “Ob ustoichivosti dvizheniya tela, avtorotiruyuschego v potoke sredy”, Izv. AN SSSR. MTT, 1990, no. 2, 32–38

[5] Privalov V. A., Samsonov V. A., “Sopostavlenie svoistv ustoichivosti dvukh rezhimov avtorotatsii”, PMM, 58:2 (1994), 37–48 | MR | Zbl

[6] Samsonov V. A., Privalov V. A., Zenkin A. N., Sokolova T. P., Issledovanie ustoichivosti avtorotiruyuschego tela, Otchët Instituta mekhaniki MGU No 3534, 1987 | Zbl

[7] Tabachnikov V. G., “Standartnye kharakteristiki krylev na malykh skorostyakh vo vsëm diapazone uglov ataki”, Tr. TsAGI, 1621, 1974, 79–93

[8] Chebotarëv N. G., Meiman N. N., “Problema Rausa–Gurvitsa dlya polinomov i tselykh funktsii”, Tr. Mat. in-ta im. V. A. Steklova, 26, 1949, 1–332

[9] Flachsbart O., “Messungen an ebenen und gowölbten Platten”, Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, Bd. 4, eds. L. Prandtl und A. Betz, München–Berlin, 1932, 96–100