Algebraic points on the plain
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 73-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article contains quantitative estimates for the measure of points $(x,y)$ of a given rectangle admitting the construction of polynomials $P(t)$ with small (with respect to the height of the polynomial) values of $P(x)$ and $P(y)$. Such estimates can be used in the problem of distribution of algebraic points on the plane.
@article{FPM_2005_11_6_a8,
     author = {V. V. Lebed and V. I. Bernik},
     title = {Algebraic points on the plain},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {73--80},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a8/}
}
TY  - JOUR
AU  - V. V. Lebed
AU  - V. I. Bernik
TI  - Algebraic points on the plain
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 73
EP  - 80
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a8/
LA  - ru
ID  - FPM_2005_11_6_a8
ER  - 
%0 Journal Article
%A V. V. Lebed
%A V. I. Bernik
%T Algebraic points on the plain
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 73-80
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a8/
%G ru
%F FPM_2005_11_6_a8
V. V. Lebed; V. I. Bernik. Algebraic points on the plain. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 73-80. http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a8/

[1] Beresnevich V. V., “Raspredelenie ratsionalnykh tochek vblizi paraboly”, Dokl. NAN Belarusi, 46 (2002), 13–15 | MR | Zbl

[2] Beresnevich V., Bernik V., Kleinbok D., Margulis G., “Metricheskaya teoriya diofantovykh priblizhenii: teorema Khinchina–Grosheva dlya nevyrozhdennykh mnogoobrazii”, Moscow Math. J., 2:2 (2000), 203–225 | MR

[3] Sprindzhuk V. G., Problema Malera v metricheskoi teorii chisel, Nauka i tekhnika, Minsk, 1967

[4] Beresnevich V. V., “On approximation of real numbers by real algebraic integers”, Acta Arith., 90:2 (1999), 97–112 | MR | Zbl

[5] Beresnevich V. V., “A Groshev type theorem for convergence on manifolds”, Acta Math. Acad. Sci. Hungar., 94 (2002), 99–130 | MR | Zbl

[6] Bernik V. I., “A metric theorem on the simultaneous approximation of zero by the values of integral polynomials”, Math. USSR-Izv., 16:1 (1981), 21–40 | DOI | MR | Zbl

[7] Bernik V. I., “On the exact order of approximation of zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 | MR | Zbl

[8] Bernik V. I., Borbat V. N., “Simultaneous approximation of zero by values of integral polynomials”, Proc. Steklov Inst. Math., 218 (1997), 53–68 | MR | Zbl

[9] Bernik V., Kleinbock D., Margulis G., “Khinchine-type theorem on manifolds: the convergence case and multiplicative versions”, Intern. Math. Research Notes, 2001, no. 9, 453–486 | DOI | MR | Zbl

[10] Huxley M., Area, lattice points and exponential sums, Oxford, 1996 | MR

[11] Pereverseva N. A., “Simultaneous approximation of zero by values of relatively prime integral polynomials”, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat., 1984