Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_6_a2, author = {V. A. Bykovskii}, title = {Estimate for dispersion of lengths of continued fractions}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {15--26}, publisher = {mathdoc}, volume = {11}, number = {6}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a2/} }
V. A. Bykovskii. Estimate for dispersion of lengths of continued fractions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 15-26. http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a2/
[1] Avdeeva M. O., “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funktsion. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl
[2] Avdeeva M. O., Bykovskii V. A., Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, Preprint, Dalnauka, Vladivostok, 2002 | MR
[3] Arnold V. I., Tsepnye drobi, MTsNMO, M., 2000
[4] Arnold I. V., Teoriya chisel, Uchpedgiz, 1939
[5] Zadachi Arnolda, Fazis, M., 2000 | MR
[6] Ustinov A. V., “O statisticheskikh svoistvakh konechnykh tsepnykh drobei”, Trudy po teorii chisel, Zap. nauchn. semin. POMI, 322, SPb., 2005, 186–211 | MR | Zbl
[7] Khinchin A. Ya., Tsepnye drobi, Fizmatgiz, M., 1961
[8] Baladi V., Valle B., “Euclidean algorithms are Gaussian”, J. Number Theory, 110:2 (2005), 331–386 | DOI | MR | Zbl
[9] Dixon J. D., “The number of steps in the Euclidean algorithm”, J. Number Theory, 2 (1970), 414–422 | DOI | MR | Zbl
[10] Heilbronn H., “On the average length of a class of finite continued fractions”, Abhandlungen aus Zahlentheorie und Analysis, VEB Deutsher Verlag der Wissenschaften, Plenum Press, Berlin, New York, 1968, 89–96 | MR
[11] Hensley D., “The number of steps in the Euclidean algorithm”, J. Number Theory, 49:2 (1994), 142–182 | DOI | MR | Zbl
[12] Porter J. W., “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl