Estimate for dispersion of lengths of continued fractions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate for dispersion of lengths of continued fractions is proved for fixed denominator. This estimate improves the trivial one by the logarithm of the denominator.
@article{FPM_2005_11_6_a2,
     author = {V. A. Bykovskii},
     title = {Estimate for dispersion of lengths of continued fractions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {15--26},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a2/}
}
TY  - JOUR
AU  - V. A. Bykovskii
TI  - Estimate for dispersion of lengths of continued fractions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 15
EP  - 26
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a2/
LA  - ru
ID  - FPM_2005_11_6_a2
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%T Estimate for dispersion of lengths of continued fractions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 15-26
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a2/
%G ru
%F FPM_2005_11_6_a2
V. A. Bykovskii. Estimate for dispersion of lengths of continued fractions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 15-26. http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a2/

[1] Avdeeva M. O., “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funktsion. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl

[2] Avdeeva M. O., Bykovskii V. A., Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, Preprint, Dalnauka, Vladivostok, 2002 | MR

[3] Arnold V. I., Tsepnye drobi, MTsNMO, M., 2000

[4] Arnold I. V., Teoriya chisel, Uchpedgiz, 1939

[5] Zadachi Arnolda, Fazis, M., 2000 | MR

[6] Ustinov A. V., “O statisticheskikh svoistvakh konechnykh tsepnykh drobei”, Trudy po teorii chisel, Zap. nauchn. semin. POMI, 322, SPb., 2005, 186–211 | MR | Zbl

[7] Khinchin A. Ya., Tsepnye drobi, Fizmatgiz, M., 1961

[8] Baladi V., Valle B., “Euclidean algorithms are Gaussian”, J. Number Theory, 110:2 (2005), 331–386 | DOI | MR | Zbl

[9] Dixon J. D., “The number of steps in the Euclidean algorithm”, J. Number Theory, 2 (1970), 414–422 | DOI | MR | Zbl

[10] Heilbronn H., “On the average length of a class of finite continued fractions”, Abhandlungen aus Zahlentheorie und Analysis, VEB Deutsher Verlag der Wissenschaften, Plenum Press, Berlin, New York, 1968, 89–96 | MR

[11] Hensley D., “The number of steps in the Euclidean algorithm”, J. Number Theory, 49:2 (1994), 142–182 | DOI | MR | Zbl

[12] Porter J. W., “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl