@article{FPM_2005_11_6_a15,
author = {A. V. Ustinov},
title = {On {Gauss{\textendash}Kuz'min} statistics for finite continued fractions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {195--208},
year = {2005},
volume = {11},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a15/}
}
A. V. Ustinov. On Gauss–Kuz'min statistics for finite continued fractions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 195-208. http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a15/
[1] Avdeeva M. O., “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funktsion. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl
[2] Avdeeva M. O., Bykovskii V. A., Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, Preprint, Dalnauka, Vladivostok, 2002
[3] Babenko K. I., “Ob odnoi zadache Gaussa”, DAN SSSR, 238:5 (1978), 1021–1024 | MR | Zbl
[4] Zadachi Arnolda, Fazis, M., 2000 | MR
[5] Knut D. E., Iskusstvo programmirovaniya. T. 2. Poluchislennye algoritmy, Vilyams, M.–Sankt-Peterburg–Kiev, 2000
[6] Tonkov T., “O srednei dline konechnykh tsepnykh drobei”, Math. Balkanica, 4 (1974), 617–629 | MR | Zbl
[7] Ustinov A. V., “O statisticheskikh svoistvakh konechnykh tsepnykh drobei”, Trudy po teorii chisel, Zap. nauchn. semin. POMI, 322, SPb., 2005, 186–211 | MR | Zbl
[8] Baladi V., Valle B., “Euclidean algorithms are Gaussian”, J. Number Theory, 110:2 (2005), 331–386 | DOI | MR | Zbl
[9] Dixon J. D., “The number of steps in the Euclidean algorithm”, J. Number Theory, 2 (1970), 414–422 | DOI | MR | Zbl
[10] Heilbronn H., “On the average length of a class of finite continued fractions”, Abhandlungen aus Zahlentheorie und Analysis, VEB Deutsher Verlag der Wissenschaften, Plenum Press, Berlin, New York, 1968, 89–96 | MR
[11] Hensley D., “The number of steps in the Euclidean algorithm”, J. Number Theory, 49:2 (1994), 142–182 | DOI | MR | Zbl
[12] Knuth D. E., “Evaluation of Porter's Constant”, Comput. Math. Appl., 2 (1976), 137–139 | DOI | MR | Zbl
[13] Kuz'min R. O., “Sur un problème de Gauss”, Atti del Congresso Internazionale dei Matematici, Bologna, 1928, 83–89
[14] Porter J. W., “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl
[15] Tonkov T., “On the average length of finite continued fractions”, Acta Arith., 26 (1974), 47–57 | MR | Zbl
[16] Vallée B., “Dynamics of the binary Euclidean algorithm: Functional analysis and operators”, Algorithmica, 22 (1998), 660–685 | DOI | MR | Zbl
[17] Vallée B., “A unifying framework for the analysis of a class of Euclidean algorithms”, Proceedings of LATIN'2000, Lect. Notes Comp. Sci., 1776, Springer, 343–354 | Zbl