On Gauss--Kuz'min statistics for finite continued fractions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 195-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to finite continued fractions for numbers $a/b$ when integer points $(a,b)$ are taken from a dilative region. Properties similar to the Gauss–Kuz'min statistics are proved for these continued fractions.
@article{FPM_2005_11_6_a15,
     author = {A. V. Ustinov},
     title = {On {Gauss--Kuz'min} statistics for finite continued fractions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {195--208},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a15/}
}
TY  - JOUR
AU  - A. V. Ustinov
TI  - On Gauss--Kuz'min statistics for finite continued fractions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 195
EP  - 208
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a15/
LA  - ru
ID  - FPM_2005_11_6_a15
ER  - 
%0 Journal Article
%A A. V. Ustinov
%T On Gauss--Kuz'min statistics for finite continued fractions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 195-208
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a15/
%G ru
%F FPM_2005_11_6_a15
A. V. Ustinov. On Gauss--Kuz'min statistics for finite continued fractions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 195-208. http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a15/

[1] Avdeeva M. O., “O statistikakh nepolnykh chastnykh konechnykh tsepnykh drobei”, Funktsion. analiz i ego pril., 38:2 (2004), 1–11 | MR | Zbl

[2] Avdeeva M. O., Bykovskii V. A., Reshenie zadachi Arnolda o statistikakh Gaussa–Kuzmina, Preprint, Dalnauka, Vladivostok, 2002

[3] Babenko K. I., “Ob odnoi zadache Gaussa”, DAN SSSR, 238:5 (1978), 1021–1024 | MR | Zbl

[4] Zadachi Arnolda, Fazis, M., 2000 | MR

[5] Knut D. E., Iskusstvo programmirovaniya. T. 2. Poluchislennye algoritmy, Vilyams, M.–Sankt-Peterburg–Kiev, 2000

[6] Tonkov T., “O srednei dline konechnykh tsepnykh drobei”, Math. Balkanica, 4 (1974), 617–629 | MR | Zbl

[7] Ustinov A. V., “O statisticheskikh svoistvakh konechnykh tsepnykh drobei”, Trudy po teorii chisel, Zap. nauchn. semin. POMI, 322, SPb., 2005, 186–211 | MR | Zbl

[8] Baladi V., Valle B., “Euclidean algorithms are Gaussian”, J. Number Theory, 110:2 (2005), 331–386 | DOI | MR | Zbl

[9] Dixon J. D., “The number of steps in the Euclidean algorithm”, J. Number Theory, 2 (1970), 414–422 | DOI | MR | Zbl

[10] Heilbronn H., “On the average length of a class of finite continued fractions”, Abhandlungen aus Zahlentheorie und Analysis, VEB Deutsher Verlag der Wissenschaften, Plenum Press, Berlin, New York, 1968, 89–96 | MR

[11] Hensley D., “The number of steps in the Euclidean algorithm”, J. Number Theory, 49:2 (1994), 142–182 | DOI | MR | Zbl

[12] Knuth D. E., “Evaluation of Porter's Constant”, Comput. Math. Appl., 2 (1976), 137–139 | DOI | MR | Zbl

[13] Kuz'min R. O., “Sur un problème de Gauss”, Atti del Congresso Internazionale dei Matematici, Bologna, 1928, 83–89

[14] Porter J. W., “On a theorem of Heilbronn”, Mathematika, 22:1 (1975), 20–28 | DOI | MR | Zbl

[15] Tonkov T., “On the average length of finite continued fractions”, Acta Arith., 26 (1974), 47–57 | MR | Zbl

[16] Vallée B., “Dynamics of the binary Euclidean algorithm: Functional analysis and operators”, Algorithmica, 22 (1998), 660–685 | DOI | MR | Zbl

[17] Vallée B., “A unifying framework for the analysis of a class of Euclidean algorithms”, Proceedings of LATIN'2000, Lect. Notes Comp. Sci., 1776, Springer, 343–354 | Zbl