Colorings of spaces, and random graphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 131-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work deals with some problems on the embeddings of finite geometric graphs into the random ones. In particular, we study here applications of the random graph theory to the Nelson–Erdös–Hadwiger problem on coloring spaces.
@article{FPM_2005_11_6_a12,
     author = {A. M. Raigorodskii},
     title = {Colorings of spaces, and random graphs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {131--141},
     publisher = {mathdoc},
     volume = {11},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a12/}
}
TY  - JOUR
AU  - A. M. Raigorodskii
TI  - Colorings of spaces, and random graphs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 131
EP  - 141
VL  - 11
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a12/
LA  - ru
ID  - FPM_2005_11_6_a12
ER  - 
%0 Journal Article
%A A. M. Raigorodskii
%T Colorings of spaces, and random graphs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 131-141
%V 11
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a12/
%G ru
%F FPM_2005_11_6_a12
A. M. Raigorodskii. Colorings of spaces, and random graphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 6, pp. 131-141. http://geodesic.mathdoc.fr/item/FPM_2005_11_6_a12/

[1] Distel R., Teoriya grafov, Izd-vo Inst. mat., Novosibirsk, 2002

[2] Kolchin V. F., Sluchainye grafy, Fizmatlit, M., 2002

[3] Raigorodskii A. M., “O khromaticheskom chisle prostranstva”, Uspekhi mat. nauk, 55:2 (2000), 147–148 | MR | Zbl

[4] Raigorodskii A. M., “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, Uspekhi mat. nauk, 56:1 (2001), 107–146 | MR | Zbl

[5] Raigorodskii A. M., “Problema Erdësha–Khadvigera i khromaticheskie chisla konechnykh geometricheskikh grafov”, Dokl. RAN, 392:3 (2003), 313–317 | MR | Zbl

[6] Raigorodskii A. M., “Problema Nelsona–Erdësha–Khadvigera i vlozheniya sluchainykh grafov v geometricheskii”, Dokl. RAN, 403:2 (2005), 169–171 | MR | Zbl

[7] Raigorodskii A. M., “Problema Erdësha–Khadvigera i khromaticheskie chisla konechnykh geometricheskikh grafov”, Mat. sb., 196:1 (2005), 123–156 | MR | Zbl

[8] Raigorodskii A. M., Khromaticheskie chisla metricheskikh prostranstv, Trudy instituta matematiki NAN Belarusi, 2005

[9] Kharari F., Teoriya grafov, Mir, M., 1973 | MR

[10] Alon N., Spencer J., The Probabilistic Method, Wiley–Interscience Series in Discrete Mathematics and Optimization, John Wiley Sons, New York, 2000 | MR

[11] Bollobás B., “Martingales, isoperimetric inequalities, and random graphs”, Proceedings (Eger, 1987), Colloq. Math. Soc. János Bolyai, 52, eds. A. Hajnal, L. Lovász, V. T. Sós, North-Holland, Amsterdam, 1987, 113–139 | MR

[12] Bollobás B., “The chromatic number of random graphs”, Combinatorica, 8 (1988), 49–56 | DOI | MR

[13] Bollobás B., Random Graphs, Second Edition, Cambridge Univ. Press, 2001 | MR

[14] De Bruijn N. G., Erdös P., “A colour problem for infinite graphs and a problem in the theory of relations”, Proc. Konink. Nederl. Akad. Wetensch. Ser. A, 54:5 (1951), 371–373 | Zbl

[15] Coulson D., “A 15-colouring of 3-space omitting distance one”, Discrete Math., 256 (2002), 83–90 | DOI | MR | Zbl

[16] Erdős P., Rényi A., “On random graphs, I”, Publ. Math. Debrecen, 6 (1959), 290–297 | MR | Zbl

[17] Erdős P., Rényi A., “On the evolution of random graphs”, Publ. Math. Inst. Hung. Acad. Sci. Ser. A, 5 (1960), 17–61 | MR | Zbl

[18] Erdős P., Rényi A., “On the evolution of random graphs, II”, Bull. Inst. Int. Stat., 38:4 (1961), 343–347 | MR | Zbl

[19] Hadwiger H., “Ein Überdeckungssatz für den Euklidischen Raum”, Portugal. Math., 4 (1944), 140–144 | MR | Zbl

[20] Hadwiger H., “Ungelöste Probleme No 40”, Elem. Math., 16 (1961), 103–104 | MR

[21] Janson S., “New versions of Suen's correlation inequality”, Random Structures Algorithms, 13 (1998), 467–483 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[22] Larman D. G., Rogers C. A., “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | DOI | MR | Zbl

[23] Moser L., Moser W., “Solution to problem 10”, Can. Math. Bull., 4 (1961), 187–189

[24] Nechushtan O., “On the space chromatic number”, Discrete Math., 256 (2002), 499–507 | DOI | MR | Zbl

[25] Soifer A., “Chromatic number of the plane: A historical essay”, Geombinatorics, 1:3 (1991), 13–15 | MR | Zbl

[26] Soifer A., Mathematical Coloring Book, Center for Excellence in Mathematical Education, 1997

[27] Székely L. A., “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his Mathematics. II. Based on the conference (Budapest, Hungary, July 4–11), Bolyai Soc. Math. Stud., 11, Springer, Berlin, 2002, 649–666 | MR | Zbl

[28] Talagrand M., “Concentration of measures and isoperimetric inequalities in product spaces”, Publ. Math. IHES, 81 (1996), 73–205 | MR