To the Markov theorem on algorithmic nonrecognizability of manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 257-259

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the number of summands in the connected union of product of spheres which is algorithmically nonrecognizable, as was shown earlier, can be reduced to 14. Also, we note that the manifold constructed by Markov himself in his original work on topological nonrecognizability coincides with such union (where the number of summands is equal to the quantity of relations in group representations of the corresponding Adian sequence).
@article{FPM_2005_11_5_a18,
     author = {M. A. Shtan'ko},
     title = {To the {Markov} theorem on algorithmic nonrecognizability of manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {257--259},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a18/}
}
TY  - JOUR
AU  - M. A. Shtan'ko
TI  - To the Markov theorem on algorithmic nonrecognizability of manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 257
EP  - 259
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a18/
LA  - ru
ID  - FPM_2005_11_5_a18
ER  - 
%0 Journal Article
%A M. A. Shtan'ko
%T To the Markov theorem on algorithmic nonrecognizability of manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 257-259
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a18/
%G ru
%F FPM_2005_11_5_a18
M. A. Shtan'ko. To the Markov theorem on algorithmic nonrecognizability of manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 257-259. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a18/