A~topological version of the argument principle and Rouche's theorem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 209-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the topological nature of the well-known in multidimensional complex analysis generalization of the classic argument principle is discussed. The topological approach offered here, ensures some topological results on the structure of pole and zero sets of holomorphic maps of bounded domains in complex manifolds. Some connections with integral representations of holomorphic functions are studied and a geometric interpretation of the Martinelli–Bochner complex-valued differential-form realization is given.
@article{FPM_2005_11_5_a15,
     author = {E. G. Sklyarenko},
     title = {A~topological version of the argument principle and {Rouche's} theorem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {209--223},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a15/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - A~topological version of the argument principle and Rouche's theorem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 209
EP  - 223
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a15/
LA  - ru
ID  - FPM_2005_11_5_a15
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T A~topological version of the argument principle and Rouche's theorem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 209-223
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a15/
%G ru
%F FPM_2005_11_5_a15
E. G. Sklyarenko. A~topological version of the argument principle and Rouche's theorem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 209-223. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a15/

[1] Aizenberg L. A., Yuzhakov A. P., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979

[2] Bott R., Tu L. V., Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989 | MR | Zbl

[3] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[4] Massi U., Teoriya gomologii i kogomologii, Mir, M., 1981 | MR

[5] Sklyarenko E. G., “Mnogomernaya versiya teoremy Koshi o vychetakh”, Mat. zametki, 49:3 (1991), 109–113 | MR | Zbl

[6] Sklyarenko E. G., “Gomologii i kogomologii svyazi mezhdu mnozhestvami. Gomologii i kogomologii okruzheniya zamknutogo mnozhestva”, Izv. RAN. Ser. mat., 56:5 (1992), 1040–1071 | MR | Zbl

[7] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl

[8] Kharlap A. E., “Lokalnye gomologii i kogomologii, gomologicheskaya razmernost i obobschennye mnogoobraziya”, Mat. sb., 96:3 (1975), 347–373 | MR | Zbl

[9] Iversen B., “Cauchy residues and de Rham homology”, Prepr. Ser. Mat. Inst. Aarhus Univ., 26 (1986–1987), 1–25 | MR