Random packings by cubes
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 187-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

Y. Itoh's problem on random integral packings of the $d$-dimensional $(4\times4)$-cube by $(2\times2)$-cubes is formulated as follows: $(2\times2)$-cubes come to the cube $K_4$ sequentially and randomly until it is possible by the following way: no $(2\times2)$-cubes overlap, and all their centers are integer points in $K_4$. Further, all admissible positions at every step are equiprobable. This process continues until the packing becomes saturated. Find the mean number $M$ of $(2\times2)$-cubes in a random saturated packing of the $(4\times4)$-cube. This paper provides the proof of the first nontrivial exponential bound of the mean number of cubes in a saturated packing in Itoh's problem: $M \ge (3/2)^d$.
@article{FPM_2005_11_5_a13,
     author = {A. P. Poyarkov},
     title = {Random packings by cubes},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {187--196},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a13/}
}
TY  - JOUR
AU  - A. P. Poyarkov
TI  - Random packings by cubes
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 187
EP  - 196
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a13/
LA  - ru
ID  - FPM_2005_11_5_a13
ER  - 
%0 Journal Article
%A A. P. Poyarkov
%T Random packings by cubes
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 187-196
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a13/
%G ru
%F FPM_2005_11_5_a13
A. P. Poyarkov. Random packings by cubes. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 187-196. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a13/

[1] Bernal J. D., “A geometrical approach to the structure of liquids”, Nature, 183 (1959), 141–147 | DOI

[2] Evans J. W., “Random and cooperative sequential adsorption”, Rev. Modern Phys., 65 (1993), 1281–1329 | DOI

[3] Itoh Y., Solomon H., “Random sequential coding by Hamming distance”, J. Appl. Probability, 23 (1986), 688–695 | DOI | MR | Zbl

[4] Itoh Y., Ueda S., “On packing density by a discrete random sequential packing of cubes in a space of $n$ dimension”, Proc. Inst. Statist. Math., 31 (1983), 65–69 | Zbl

[5] Penrose M. D., “Random parking, sequential adsorption and the jamming limit”, Comm. Math. Phys., 218 (2001), 153–176 | DOI | MR | Zbl

[6] Renyi A., “On a one-dimensional problem concerning space-filling”, Publ. Math. Inst. Hungar. Acad. Sci., 3 (1958), 109–127 | MR