Implicit functional and eigenvalue problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 169-186

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach is suggested to nonlinear, positively homogeneous eigenvalue problems based on the using of the spectral parameter as functional of Euler type. It allows one to present the spectral parameter domain as a bifurcation diagram of the problem. Fučik spectrum problems (classic and for $p$-Laplacian) and the problem with a nonlinear dependence of the weight function on the spectral parameter are considered.
@article{FPM_2005_11_5_a12,
     author = {I. L. Pokrovski},
     title = {Implicit functional and eigenvalue problems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {169--186},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a12/}
}
TY  - JOUR
AU  - I. L. Pokrovski
TI  - Implicit functional and eigenvalue problems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 169
EP  - 186
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a12/
LA  - ru
ID  - FPM_2005_11_5_a12
ER  - 
%0 Journal Article
%A I. L. Pokrovski
%T Implicit functional and eigenvalue problems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 169-186
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a12/
%G ru
%F FPM_2005_11_5_a12
I. L. Pokrovski. Implicit functional and eigenvalue problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 169-186. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a12/