Implicit functional and eigenvalue problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 169-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach is suggested to nonlinear, positively homogeneous eigenvalue problems based on the using of the spectral parameter as functional of Euler type. It allows one to present the spectral parameter domain as a bifurcation diagram of the problem. Fučik spectrum problems (classic and for $p$-Laplacian) and the problem with a nonlinear dependence of the weight function on the spectral parameter are considered.
@article{FPM_2005_11_5_a12,
     author = {I. L. Pokrovski},
     title = {Implicit functional and eigenvalue problems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {169--186},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a12/}
}
TY  - JOUR
AU  - I. L. Pokrovski
TI  - Implicit functional and eigenvalue problems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 169
EP  - 186
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a12/
LA  - ru
ID  - FPM_2005_11_5_a12
ER  - 
%0 Journal Article
%A I. L. Pokrovski
%T Implicit functional and eigenvalue problems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 169-186
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a12/
%G ru
%F FPM_2005_11_5_a12
I. L. Pokrovski. Implicit functional and eigenvalue problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 169-186. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a12/

[1] Courant R., Hilbert D., Methods of Mathematical Physics, Interscience, New York, 1962 | Zbl

[2] Cuesta M., “On the Fučik spectrum of the Laplacian and the $p$-Laplacian”, Seminar in Differential Equations, Proc. of the Seminar (Kvilda. May 29–June 2, 2000), Univ. of West Bohemia in Pilsen, 65–96

[3] Cuesta M., de Figueiredo D., Gossez J.-P., “The beginning of the Fučik spectrum for the $p$-Laplacian”, J. Differential Equations, 159:1 (1999), 212–238 | DOI | MR | Zbl

[4] Dancer E. N., “On the Dirichlet problem for weakly non-linear elliptic partial differential equations”, Proc. Roy. Soc. Edinburg. Sect. A, 76 (1977), 283–300 | MR | Zbl

[5] Dràbek P., Solvability and Bifurcations of Nonlinear Equations, Pitman Research Notes Math., 264, John Wiley and Sons, Longman Scientific and Technical, Harlow, New York, 1992 | MR | Zbl

[6] Dràbek P., Robinson S., “Resonance problem for the $p$-Laplacian”, J. Funct. Anal., 169:1 (1999), 189–200 | DOI | MR | Zbl

[7] De Figueiredo D. G., Gossez J.-P., “Sur la première courbe du spectre de Fučik d'un opérateur elliptique”, C. R. Acad. Sci. Paris. Sér. I, 316 (1993), 1295–1298 | MR | Zbl

[8] Fučik S., “Boundary value problems with jumping nonlinearities”, Cas. Pest. Mat., 101 (1976), 69–87 | MR

[9] Fučik S., Kufner A., Nonlinear Differential Equations, Stud. Appl. Mech., 2, Elsevier Science, Amsterdam, 1980 | MR

[10] Gajevski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operator-differentialgleichungen, Math. Monograph., 38, Academie, Berlin, 1974

[11] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983 | MR | Zbl

[12] Lindqvist P., “On the equation $\operatorname{div}(|\nabla|^{p-2}\nabla u) +\lambda|u|^{p-2}u=0$”, Proc. Amer. Math. Soc., 109:1 (1990), 157–164 ; ibid 116:2 (1992), 583–584 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Palais R. S., “Lusternik–Schnirelman theory on Banach manifolds”, Topology, 5 (1966), 115–132 | DOI | MR | Zbl

[14] Schechter M., “The Fučik spectrum”, Indiana Univ. Math. J., 43 (1994), 1139–1157 | DOI | MR | Zbl