Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_5_a11, author = {J. Mycielski}, title = {Pure mathematics and physical reality (continuity and computability)}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {151--168}, publisher = {mathdoc}, volume = {11}, number = {5}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a11/} }
J. Mycielski. Pure mathematics and physical reality (continuity and computability). Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 151-168. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a11/
[1] Kan I., “Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin”, Bull. Amer. Math. Soc., 31 (1994), 68–74 | DOI | MR | Zbl
[2] Kanamori A., The Higher Infinite, Springer, 1994 | MR | Zbl
[3] Kuratowski K., Topology, Academic Press, 1966–1968 | MR | Zbl
[4] Mycielski J., “Can mathematics explain natural intelligence?”, Physica D, 22 (1986), 366–375 | MR | Zbl
[5] Mycielski J., “A learning theorem for linear operators”, Proc. Amer. Math. Soc., 103 (1988), 547–550 | DOI | MR | Zbl
[6] Mycielski J., “Games with perfect information”, Handbook of Game Theory, V. I, eds. R. J. Aumann, S. Hart, North-Holland, 1992, 41–70 | MR
[7] Mycielski J., “On the tension between Tarski's nominalism and his model theory (definitions for a mathematical model of knowledge)”, Ann. Pure Appl. Logic, 126 (2004), 215–224, Proc. Alfred Tarski's Centenary Conference, Warsaw 2001 | DOI | MR | Zbl
[8] Mycielski J., “Russell's paradox and Hilbert's (much forgotten) view of set theory”, One Hundred Years of Russell's Paradox, ed. G. Link, Walter de Gruyter, Berlin, 2004, 533–547 | MR
[9] Mycielski J., Swierczkowski S., “A model of the neocortex”, Adv. Appl. Math., 9 (1988), 465–480 | DOI | MR | Zbl
[10] Neeman I., “Optimal proofs of determinacy”, Bull. Symbolic Logic, 1 (1995), 327–339 | DOI | MR | Zbl
[11] Neeman I., “Optimal proofs of determinacy, II”, J. Math. Logic, 2 (2002), 227–258 | DOI | MR | Zbl
[12] Pour-El M. B., “The structure of computability in analysis and physical theory: An extension of Church's thesis”, Handbook of Computability Theory, ed. E. R. Griff, Elsevier Science, Amsterdam, 1999, 449–471 | MR | Zbl
[13] Pour-El M. B., Richards J. I., Computability in Analysis and Physics, Springer, 1989 | MR | Zbl
[14] Volchan S. B., “What is a random sequence?”, Amer. Math. Monthly, 109 (2002), 46–63 | DOI | MR | Zbl