Pure mathematics and physical reality (continuity and computability)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 151-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

Drawing upon the intuitive distinction between the real and imaginary mathematical objects (i.e., these which have an actual or potential physical interpretations and these which do not), we propose a mathematical definition of these concepts. Our definition of the class of real objects is based on a certain universal continuous function. We also discuss the class of computable reals, functions, functionals, operators, etc. and we argue that it is too narrow to encompass the class of real objects.
@article{FPM_2005_11_5_a11,
     author = {J. Mycielski},
     title = {Pure mathematics and physical reality (continuity and computability)},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--168},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a11/}
}
TY  - JOUR
AU  - J. Mycielski
TI  - Pure mathematics and physical reality (continuity and computability)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 151
EP  - 168
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a11/
LA  - ru
ID  - FPM_2005_11_5_a11
ER  - 
%0 Journal Article
%A J. Mycielski
%T Pure mathematics and physical reality (continuity and computability)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 151-168
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a11/
%G ru
%F FPM_2005_11_5_a11
J. Mycielski. Pure mathematics and physical reality (continuity and computability). Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 151-168. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a11/

[1] Kan I., “Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin”, Bull. Amer. Math. Soc., 31 (1994), 68–74 | DOI | MR | Zbl

[2] Kanamori A., The Higher Infinite, Springer, 1994 | MR | Zbl

[3] Kuratowski K., Topology, Academic Press, 1966–1968 | MR | Zbl

[4] Mycielski J., “Can mathematics explain natural intelligence?”, Physica D, 22 (1986), 366–375 | MR | Zbl

[5] Mycielski J., “A learning theorem for linear operators”, Proc. Amer. Math. Soc., 103 (1988), 547–550 | DOI | MR | Zbl

[6] Mycielski J., “Games with perfect information”, Handbook of Game Theory, V. I, eds. R. J. Aumann, S. Hart, North-Holland, 1992, 41–70 | MR

[7] Mycielski J., “On the tension between Tarski's nominalism and his model theory (definitions for a mathematical model of knowledge)”, Ann. Pure Appl. Logic, 126 (2004), 215–224, Proc. Alfred Tarski's Centenary Conference, Warsaw 2001 | DOI | MR | Zbl

[8] Mycielski J., “Russell's paradox and Hilbert's (much forgotten) view of set theory”, One Hundred Years of Russell's Paradox, ed. G. Link, Walter de Gruyter, Berlin, 2004, 533–547 | MR

[9] Mycielski J., Swierczkowski S., “A model of the neocortex”, Adv. Appl. Math., 9 (1988), 465–480 | DOI | MR | Zbl

[10] Neeman I., “Optimal proofs of determinacy”, Bull. Symbolic Logic, 1 (1995), 327–339 | DOI | MR | Zbl

[11] Neeman I., “Optimal proofs of determinacy, II”, J. Math. Logic, 2 (2002), 227–258 | DOI | MR | Zbl

[12] Pour-El M. B., “The structure of computability in analysis and physical theory: An extension of Church's thesis”, Handbook of Computability Theory, ed. E. R. Griff, Elsevier Science, Amsterdam, 1999, 449–471 | MR | Zbl

[13] Pour-El M. B., Richards J. I., Computability in Analysis and Physics, Springer, 1989 | MR | Zbl

[14] Volchan S. B., “What is a random sequence?”, Amer. Math. Monthly, 109 (2002), 46–63 | DOI | MR | Zbl