Pure mathematics and physical reality (continuity and computability)
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 151-168

Voir la notice de l'article provenant de la source Math-Net.Ru

Drawing upon the intuitive distinction between the real and imaginary mathematical objects (i.e., these which have an actual or potential physical interpretations and these which do not), we propose a mathematical definition of these concepts. Our definition of the class of real objects is based on a certain universal continuous function. We also discuss the class of computable reals, functions, functionals, operators, etc. and we argue that it is too narrow to encompass the class of real objects.
@article{FPM_2005_11_5_a11,
     author = {J. Mycielski},
     title = {Pure mathematics and physical reality (continuity and computability)},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--168},
     publisher = {mathdoc},
     volume = {11},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a11/}
}
TY  - JOUR
AU  - J. Mycielski
TI  - Pure mathematics and physical reality (continuity and computability)
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 151
EP  - 168
VL  - 11
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a11/
LA  - ru
ID  - FPM_2005_11_5_a11
ER  - 
%0 Journal Article
%A J. Mycielski
%T Pure mathematics and physical reality (continuity and computability)
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 151-168
%V 11
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a11/
%G ru
%F FPM_2005_11_5_a11
J. Mycielski. Pure mathematics and physical reality (continuity and computability). Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 5, pp. 151-168. http://geodesic.mathdoc.fr/item/FPM_2005_11_5_a11/