Knot theory and the Casson invariant in Artin presentation theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 119-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

In Artin presentation theory, a smooth, compact four-manifold is determined by a certain type of presentation of the fundamental group of its boundary. Topological invariants of both three- and four-manifolds can be calculated solely in terms of functions of the discrete Artin presentation. González-Acuña proposed such a formula for the Rokhlin invariant of an integral homology three-sphere. This paper provides a formula for the Casson invariant of rational homology spheres. Thus, all 3D Seiberg–Witten invariants can be calculated by using methods of theory of groups in Artin presentation theory. The Casson invariant is closely related to canonical knots determined by an Artin presentation. It is also shown that any knot in any three-manifold appears as a canonical knot in Artin presentation theory. An open problem is to determine 4D Seiberg–Witten and Donaldson invariants in Artin presentation theory.
@article{FPM_2005_11_4_a9,
     author = {J. S. Calcut},
     title = {Knot theory and the {Casson} invariant in {Artin} presentation theory},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a9/}
}
TY  - JOUR
AU  - J. S. Calcut
TI  - Knot theory and the Casson invariant in Artin presentation theory
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 119
EP  - 126
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a9/
LA  - ru
ID  - FPM_2005_11_4_a9
ER  - 
%0 Journal Article
%A J. S. Calcut
%T Knot theory and the Casson invariant in Artin presentation theory
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 119-126
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a9/
%G ru
%F FPM_2005_11_4_a9
J. S. Calcut. Knot theory and the Casson invariant in Artin presentation theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 119-126. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a9/

[1] Armas-Sanabria L., “The $\mu$ invariant and the Casson invariant of 3-manifolds obtained by surgery on closed pure 3-braids”, J. Knot Theory Ramifications, 13:3 (2004), 427–440 | DOI | MR | Zbl

[2] Akbulut S., McCarthy J., Casson's Invariant for Oriented Homology 3-Spheres, Math. Notes, 36, Princeton Univ. Press, 1990 | MR | Zbl

[3] Calcut J. S., Torelli Actions and Smooth Structures on 4-Manifolds, Ph.D. Thesis, University of Maryland, 2004 | MR

[4] Calcut J. S., Winkelnkemper H. E., “Artin presentations of complex surfaces”, Bol. Soc. Mat. Mexicana (3), 10, Special Issue (2004), 63–87 | MR | Zbl

[5] Fintushel R., Stern R., “Knots, links, and 4-manifolds”, Invent. Math., 134:2 (1998), 363–400 | DOI | MR | Zbl

[6] Gompf R., Stipsicz A., “4-Manifolds and Kirby Calculus”, Amer. Math. Soc., Grad. Stud. Math., 20, 1999 | MR | Zbl

[7] González-Acuña F., Open Books, Lect. Notes, University of Iowa, 1975

[8] Lickorish W., “A representation of orientable combinatorial 3-manifolds”, Ann. Math., 76:3 (1962), 531–540 | DOI | MR | Zbl

[9] Lickorish W., “A finite set of generators for the homeotopy group of a 2-manifold”, Math. Proc. Cambridge Philos. Soc., 60 (1964), 769–778 | DOI | MR | Zbl

[10] Lickorish W., “A foliation for 3-manifolds”, Ann. Math., 82 (1965), 414–420 | DOI | MR | Zbl

[11] Lim Y., “The equivalence of Seiberg–Witten and Casson invariants for homology 3-spheres”, Math. Res. Lett., 6 (1999), 631–643 | MR | Zbl

[12] Meng G., Taubes C. H., “$\underline{\mathrm{SW}}=$ Milnor torsion”, Math. Res. Lett., 3:5 (1996), 661–674 | MR | Zbl

[13] Rolfsen D., Knots and Links, Publish or Perish, Berkeley, 1976 | MR | Zbl

[14] Walker K., An Extension of Casson's Invariant, Ann. Math. Stud., 126, Princeton Univ. Press, 1992 | MR | Zbl

[15] Winkelnkemper H. E., “Artin presentations. I: Gauge theory, $3+1$ TQFTs and the braid groups”, J. Knot Theory Ramifications, 11:2 (2002), 223–275 | DOI | MR | Zbl