Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_4_a9, author = {J. S. Calcut}, title = {Knot theory and the {Casson} invariant in {Artin} presentation theory}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {119--126}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a9/} }
J. S. Calcut. Knot theory and the Casson invariant in Artin presentation theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 119-126. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a9/
[1] Armas-Sanabria L., “The $\mu$ invariant and the Casson invariant of 3-manifolds obtained by surgery on closed pure 3-braids”, J. Knot Theory Ramifications, 13:3 (2004), 427–440 | DOI | MR | Zbl
[2] Akbulut S., McCarthy J., Casson's Invariant for Oriented Homology 3-Spheres, Math. Notes, 36, Princeton Univ. Press, 1990 | MR | Zbl
[3] Calcut J. S., Torelli Actions and Smooth Structures on 4-Manifolds, Ph.D. Thesis, University of Maryland, 2004 | MR
[4] Calcut J. S., Winkelnkemper H. E., “Artin presentations of complex surfaces”, Bol. Soc. Mat. Mexicana (3), 10, Special Issue (2004), 63–87 | MR | Zbl
[5] Fintushel R., Stern R., “Knots, links, and 4-manifolds”, Invent. Math., 134:2 (1998), 363–400 | DOI | MR | Zbl
[6] Gompf R., Stipsicz A., “4-Manifolds and Kirby Calculus”, Amer. Math. Soc., Grad. Stud. Math., 20, 1999 | MR | Zbl
[7] González-Acuña F., Open Books, Lect. Notes, University of Iowa, 1975
[8] Lickorish W., “A representation of orientable combinatorial 3-manifolds”, Ann. Math., 76:3 (1962), 531–540 | DOI | MR | Zbl
[9] Lickorish W., “A finite set of generators for the homeotopy group of a 2-manifold”, Math. Proc. Cambridge Philos. Soc., 60 (1964), 769–778 | DOI | MR | Zbl
[10] Lickorish W., “A foliation for 3-manifolds”, Ann. Math., 82 (1965), 414–420 | DOI | MR | Zbl
[11] Lim Y., “The equivalence of Seiberg–Witten and Casson invariants for homology 3-spheres”, Math. Res. Lett., 6 (1999), 631–643 | MR | Zbl
[12] Meng G., Taubes C. H., “$\underline{\mathrm{SW}}=$ Milnor torsion”, Math. Res. Lett., 3:5 (1996), 661–674 | MR | Zbl
[13] Rolfsen D., Knots and Links, Publish or Perish, Berkeley, 1976 | MR | Zbl
[14] Walker K., An Extension of Casson's Invariant, Ann. Math. Stud., 126, Princeton Univ. Press, 1992 | MR | Zbl
[15] Winkelnkemper H. E., “Artin presentations. I: Gauge theory, $3+1$ TQFTs and the braid groups”, J. Knot Theory Ramifications, 11:2 (2002), 223–275 | DOI | MR | Zbl