Geometry of Euclidean tetrahedra and knot invariants
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 105-117
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct knot invariants on the basis of ascribing Euclidean geometric values to a triangulation of the sphere $S^3$, where the knot lies. Edges of the triangulation along which the knot goes are distinguished by a nonzero deficit angle, in the terminology of the Regge calculus.
@article{FPM_2005_11_4_a8,
author = {I. G. Korepanov},
title = {Geometry of {Euclidean} tetrahedra and knot invariants},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {105--117},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a8/}
}
I. G. Korepanov. Geometry of Euclidean tetrahedra and knot invariants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 105-117. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a8/