Geometry of Euclidean tetrahedra and knot invariants
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 105-117

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct knot invariants on the basis of ascribing Euclidean geometric values to a triangulation of the sphere $S^3$, where the knot lies. Edges of the triangulation along which the knot goes are distinguished by a nonzero deficit angle, in the terminology of the Regge calculus.
@article{FPM_2005_11_4_a8,
     author = {I. G. Korepanov},
     title = {Geometry of {Euclidean} tetrahedra and knot invariants},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a8/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - Geometry of Euclidean tetrahedra and knot invariants
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 105
EP  - 117
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a8/
LA  - ru
ID  - FPM_2005_11_4_a8
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T Geometry of Euclidean tetrahedra and knot invariants
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 105-117
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a8/
%G ru
%F FPM_2005_11_4_a8
I. G. Korepanov. Geometry of Euclidean tetrahedra and knot invariants. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 105-117. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a8/