Properly 3-realizable groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 95-103
Voir la notice de l'article provenant de la source Math-Net.Ru
A finitely presented group $G$ is said to be properly 3-realizable if there exists a compact 2-polyhedron $K$ with $\pi_1(K)\cong G$ and whose universal cover has the proper homotopy type of a 3-manifold (with boundary). We discuss the behavior of this property with respect to amalgamated products, HNN-extensions, and direct products, as well as the independence with respect to the chosen 2-polyhedron. We also exhibit certain classes of groups satisfying this property: finitely generated Abelian groups, (classical) hyperbolic groups, and one-relator groups.
@article{FPM_2005_11_4_a7,
author = {M. Cardenas and F. F. Lasheras and A. Quintero},
title = {Properly 3-realizable groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {95--103},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a7/}
}
M. Cardenas; F. F. Lasheras; A. Quintero. Properly 3-realizable groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 95-103. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a7/