Properly 3-realizable groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 95-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finitely presented group $G$ is said to be properly 3-realizable if there exists a compact 2-polyhedron $K$ with $\pi_1(K)\cong G$ and whose universal cover has the proper homotopy type of a 3-manifold (with boundary). We discuss the behavior of this property with respect to amalgamated products, HNN-extensions, and direct products, as well as the independence with respect to the chosen 2-polyhedron. We also exhibit certain classes of groups satisfying this property: finitely generated Abelian groups, (classical) hyperbolic groups, and one-relator groups.
@article{FPM_2005_11_4_a7,
     author = {M. Cardenas and F. F. Lasheras and A. Quintero},
     title = {Properly 3-realizable groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {95--103},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a7/}
}
TY  - JOUR
AU  - M. Cardenas
AU  - F. F. Lasheras
AU  - A. Quintero
TI  - Properly 3-realizable groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 95
EP  - 103
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a7/
LA  - ru
ID  - FPM_2005_11_4_a7
ER  - 
%0 Journal Article
%A M. Cardenas
%A F. F. Lasheras
%A A. Quintero
%T Properly 3-realizable groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 95-103
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a7/
%G ru
%F FPM_2005_11_4_a7
M. Cardenas; F. F. Lasheras; A. Quintero. Properly 3-realizable groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 95-103. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a7/

[1] Ayala R., Cárdenas M., Lasheras F. F., Quintero A., “Properly $3$-realizable groups”, Proc. Amer. Math. Soc., 133 (2005), 1527–1535 | DOI | MR | Zbl

[2] Baues H.-J., Quintero A., Infinite Homotopy Theory, K-Monographs in Mathematics, Kluwer Academic, 2001 | MR | Zbl

[3] Cárdenas M., Fernández T., Lasheras F. F., Quintero A., “Embedding proper homotopy types”, Colloq. Math., 95:1 (2003), 1–20 | DOI | MR | Zbl

[4] Cárdenas M., Lasheras F. F., Muro F., Quintero A., “Proper L-S category, fundamental pro-groups and $2$-dimensional proper co-$H$-spaces”, Topology Appl. (to appear)

[5] Cárdenas M., Lasheras F. F., Roy R., “Direct products and properly $3$-realizable groups”, Bull. Austral. Math. Soc. (to appear) | MR

[6] Dranisnikov A. N., Repovš D., “Embedding up to homotopy type in Euclidean spaces”, Bull. Austral. Math. Soc., 47 (1993), 145–148 | DOI | MR | Zbl

[7] Dunwoody M. J., “The accessibility of finitely presented groups”, Invent. Math., 81 (1985), 449–457 | DOI | MR | Zbl

[8] Epstein D. B. A., “Ends”, Topology of $3$-Manifolds and Related Topics (Proc. Univ. Georgia Inst. 1961), Prentice Hall, New York, 1962, 110–117 | MR

[9] Geoghegan R., Topological Methods in Group Theory (to appear)

[10] Geoghegan R., Mihalik M., “Free Abelian cohomology of groups and ends of universal covers”, J. Pure Appl. Algebra, 36 (1985), 123–137 | DOI | MR | Zbl

[11] Geoghegan R., Mihalik M., “The fundamental group at infinity”, Topology, 35:3 (1996), 655–669 | DOI | MR | Zbl

[12] Lasheras F. F., “Universal covers and $3$-manifolds”, J. Pure Appl. Algebra, 151:2 (2000), 163–172 | DOI | MR | Zbl

[13] Lasheras F. F., One-Relator Groups Are Properly $3$-Realizable, Preprint

[14] Mardešic S., Segal J., Shape Theory, North-Holland, 1982 | MR | Zbl

[15] Scott P., Wall C. T. C., “Topological methods in group theory”, Homological Group Theory, London Math. Soc. Lect. Notes, Cambridge Univ. Press, Cambridge, 1979, 137–204 | MR

[16] Stallings J. R., The Embedding of Homotopy Types into Manifolds, Mineographed Notes, Princeton Univ. Press, 1965 | Zbl

[17] Wall C. T. C., “Finiteness conditions for $CW$-complexes”, Ann. Math., 81 (1965), 56–69 | DOI | MR | Zbl

[18] Whitehead J. H. C., “Simple homotopy types”, Amer. J. Math., 72 (1950), 1–57 | DOI | MR | Zbl