Properly 3-realizable groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 95-103

Voir la notice de l'article provenant de la source Math-Net.Ru

A finitely presented group $G$ is said to be properly 3-realizable if there exists a compact 2-polyhedron $K$ with $\pi_1(K)\cong G$ and whose universal cover has the proper homotopy type of a 3-manifold (with boundary). We discuss the behavior of this property with respect to amalgamated products, HNN-extensions, and direct products, as well as the independence with respect to the chosen 2-polyhedron. We also exhibit certain classes of groups satisfying this property: finitely generated Abelian groups, (classical) hyperbolic groups, and one-relator groups.
@article{FPM_2005_11_4_a7,
     author = {M. Cardenas and F. F. Lasheras and A. Quintero},
     title = {Properly 3-realizable groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {95--103},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a7/}
}
TY  - JOUR
AU  - M. Cardenas
AU  - F. F. Lasheras
AU  - A. Quintero
TI  - Properly 3-realizable groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 95
EP  - 103
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a7/
LA  - ru
ID  - FPM_2005_11_4_a7
ER  - 
%0 Journal Article
%A M. Cardenas
%A F. F. Lasheras
%A A. Quintero
%T Properly 3-realizable groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 95-103
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a7/
%G ru
%F FPM_2005_11_4_a7
M. Cardenas; F. F. Lasheras; A. Quintero. Properly 3-realizable groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 95-103. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a7/