Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_4_a3, author = {D. A. Vorotnikov and V. G. Zvyagin}, title = {On the convergence of solutions of regularized problem for motion equations of {Jeffreys} viscoelastic medium to solutions of the original problem}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {49--63}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a3/} }
TY - JOUR AU - D. A. Vorotnikov AU - V. G. Zvyagin TI - On the convergence of solutions of regularized problem for motion equations of Jeffreys viscoelastic medium to solutions of the original problem JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 49 EP - 63 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a3/ LA - ru ID - FPM_2005_11_4_a3 ER -
%0 Journal Article %A D. A. Vorotnikov %A V. G. Zvyagin %T On the convergence of solutions of regularized problem for motion equations of Jeffreys viscoelastic medium to solutions of the original problem %J Fundamentalʹnaâ i prikladnaâ matematika %D 2005 %P 49-63 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a3/ %G ru %F FPM_2005_11_4_a3
D. A. Vorotnikov; V. G. Zvyagin. On the convergence of solutions of regularized problem for motion equations of Jeffreys viscoelastic medium to solutions of the original problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 49-63. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a3/
[1] Goldshtein R. V., Gorodtsov V. A., Mekhanika sploshnykh sred. Chast I, Nauka, Fizmatlit, 2000
[2] Zvyagin V. G., Vorotnikov D. A., Matematicheskie modeli nenyutonovskikh zhidkostei, VGU, Voronezh, 2004
[3] Zvyagin V. G., Dmitrienko V. T., “O slabykh resheniyakh regulyarizovannoi modeli vyazkouprugoi zhidkosti”, Differents. uravn., 38:12 (2002), 1633–1645 | MR | Zbl
[4] Oldroid Dzh. G., “Nenyutonovskie techeniya zhidkostei i tverdykh tel”, Reologiya: Teoriya i prilozheniya, IL, M., 1962, 757–793
[5] Reiner M., Reologiya, Fizmatgiz, M., 1965
[6] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl
[7] Dmitrienko V. T., Zvyagin V. G., “Investigation of a regularized model of motion of a viscoelastic medium”, Analytical Approaches to Multidimensional Balance Laws, ed. O. Rozanova, Nova Science, New York, 2004 | MR
[8] Guillopé C., Saut J. C., “Mathematical problems arising in differential models for viscoelastic fluids”, Mathematical Topics in Fluid Mechanics, Longman, Harlow, 1993, 64–92 | MR | Zbl
[9] Litvinov W. G., A model and general problem on plastic flow under deformations Bericht, Universität Stuttgart, 1999
[10] Vorotnikov D. A., Zvyagin V. G., “On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium”, Abstr. Appl. Anal., 2004, no. 10, 815–829 | DOI | MR | Zbl