The genus of $G$-spaces and topological lower bounds for chromatic numbers of hypergraphs
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lower bounds for chromatic numbers of hypergraphs via genus and cohomological index of special complexes ($\operatorname{Hom}$- and $\operatorname{JHom}$-complexes) are given.
@article{FPM_2005_11_4_a2,
     author = {A. Yu. Volovikov},
     title = {The genus of $G$-spaces and topological lower bounds for chromatic numbers of hypergraphs},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a2/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - The genus of $G$-spaces and topological lower bounds for chromatic numbers of hypergraphs
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 33
EP  - 48
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a2/
LA  - ru
ID  - FPM_2005_11_4_a2
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T The genus of $G$-spaces and topological lower bounds for chromatic numbers of hypergraphs
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 33-48
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a2/
%G ru
%F FPM_2005_11_4_a2
A. Yu. Volovikov. The genus of $G$-spaces and topological lower bounds for chromatic numbers of hypergraphs. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 33-48. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a2/

[1] Bogatyi S. A., “Gipoteza Borsuka, prepyatstvie Ryshkova, interpolyatsiya, chebyshevskie priblizheniya, transversalnaya teorema Tverberga, problemy”, Trudy Mat. in-ta im. V. A. Steklova, 239, 2002, 63–82 | MR | Zbl

[2] Volovikov A. Yu., “K teoreme van Kampena–Floresa”, Mat. zametki, 59:5 (1996), 663–670 | MR | Zbl

[3] Volovikov A. Yu., “Ob indekse $G$-prostranstv”, Mat. sb., 191:9 (2000), 3–22 | MR | Zbl

[4] Volovikov A. Yu., “Rod $G$-prostranstv i topologicheskie otsenki khromaticheskikh chisel”, Materialy VIII Mezhdunarodnogo seminara “Diskretnaya matematika i ee prilozheniya”, Izd-vo mekhaniko-matematicheskogo f-ta MGU, 2004, 384–387

[5] Volovikov A. Yu., “Tochki sovpadeniya otobrazhenii $\mathrm{zz}_p^k$-prostranstv”, Izv. RAN. Ser. mat., 69:5 (2005), 53–106 | MR | Zbl

[6] Shvarts A. S., “Rod rassloennogo prostranstva”, Tr. MMO, 10, 1961, 217–272

[7] Shvarts A. S., “Rod rassloennogo prostranstva”, Tr. MMO, 11, 1962, 99–126 | Zbl

[8] Bárány I., Shlosman S. B., Szücs A., “On a topological generalization of a theorem of Tverberg”, J. London Math. Soc., 23 (1981), 158–164 | DOI | MR | Zbl

[9] Clapp M., Puppe D., “Critical point theory with symmetries”, J. Reine Angew. Math., 418 (1991), 1–29 | MR | Zbl

[10] Conner P. E., Floyd E. E., “Fixed point free involutions and equivariant maps”, Bull. Amer. Math. Soc., 66 (1960), 416–441 | DOI | MR | Zbl

[11] Fadell E., Husseini S., “An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorems”, Ergodic Theory Dynam. Systems, 8 (1988), 259–268, Spec. Issue | DOI | MR

[12] Křiž I., “Equivariant cohomology and lower bounds for chromatic numbers”, Trans. Amer. Math. Soc., 333:3 (1992), 567–577 | MR | Zbl

[13] Lange C., On generalised Kneser colourings, , 2003 arXiv: /math.CO/0312067

[14] Matousek J., Using the Borsuk–Ulam Theorem, Lectures on Topological Methods in Combinatorics and Geometry, Springer, Berlin, 2003 | MR

[15] Lovász L., “Kneser's conjecture, chromatic number and homotopy”, J. Combin. Theory Ser. A, 25 (1978), 319–324 | DOI | MR | Zbl

[16] Özadyn M., Equivariant maps for the symmetric group, Preprint, Univ. of Wisconsin–Madison, 1987

[17] Sarkaria K. S., “A generalized Kneser conjecture”, J. Combin. Theory Ser. B, 49 (1990), 236–240 | DOI | MR | Zbl

[18] Sarkaria K. S., “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl

[19] Yang C. T., “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobô and Dyson, I”, Ann. of Math., 60 (1954), 262–282 | DOI | MR | Zbl

[20] Yang C. T., “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobô and Dyson. II”, Ann. of Math., 62:2 (1955), 271–283 | DOI | MR | Zbl

[21] Z̆ivaljević R. T., “User's guide to equivariant methods in combinatorics”, Publications of the Institute of Mathematics, Belgrade, 59(73) (1996), 114–130 | MR | Zbl

[22] Z̆ivaljević R. T., “User's guide to equivariant methods in combinatorics, II”, Publications de l'Institute de Mathematique. Nouvelle série, 64(78) (1998), 107–132 | MR | Zbl