Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_4_a17, author = {F. Hegenbarth and D. Repov\v{s}}, title = {Solving four-dimensional surgery problems using controlled theory}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {221--236}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a17/} }
TY - JOUR AU - F. Hegenbarth AU - D. Repovš TI - Solving four-dimensional surgery problems using controlled theory JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 221 EP - 236 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a17/ LA - ru ID - FPM_2005_11_4_a17 ER -
F. Hegenbarth; D. Repovš. Solving four-dimensional surgery problems using controlled theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 221-236. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a17/
[1] Cappell S., “Mayer–Vietoris sequences in Hermitian K-theory”, Batelle Inst. Conf. 1972, Lect. Notes. Math., 343, Springer, New York, 478–507 | MR
[2] Cavicchioli A., Hegenbarth F., “On $4$-manifolds with free fundamental groups”, Forum Math., 6 (1994), 415–429 | DOI | MR | Zbl
[3] Cavicchioli A., Hegenbarth F., Repovš D., “Four-manifolds with surface fundamental groups”, Trans. Amer. Math. Soc., 349 (1997), 4007–4019 | DOI | MR | Zbl
[4] Cohen M., “Simplicial structures and transverse cellularity”, Ann. of Math., 85 (1967), 218–245 | DOI | MR | Zbl
[5] Davermann R. J., Decomposition of Manifolds, Academic Press, Orlando, 1986 | MR
[6] Ferry S., Epsilon-delta surgery over $\mathbb Z$, Preprint, 2003 | MR
[7] Freedman M. H., “The topology of four-dimensional manifolds”, J. Differential Geom., 17 (1982), 357–453 | MR | Zbl
[8] Freedman M. H., Quinn F. S., Topology of $4$-Manifolds, Princeton Univ. Press, Princeton, 1990 | MR | Zbl
[9] Freedman M., Teichner P., “$4$-manifold topology. I. Subexponential groups”, Invent. Math., 122 (1995), 509–529 | DOI | MR | Zbl
[10] Freedman M., Teichner P., “$4$-manifold topology. II. Dwyer's fibration and surgery kernels”, Invent. Math., 122 (1995), 531–557 | DOI | MR | Zbl
[11] Hegenbarth F., Repovš D., Spaggiari F., “Connected sums of $4$-manifolds”, Topology Appl. (to appear) | DOI | MR
[12] Jones L., “Patchspaces: A geometric representation for Poincaré spaces”, Ann. of Math., 97 (1973), 276–306 ; Corrigendum, ibid, 102 (1975), 183–185 | DOI | MR | MR | Zbl
[13] Krushkal V., Lee R., “Surgery on closed manifolds with free fundamental groups”, Math. Proc. Cambridge Philos. Soc., 133 (2002), 305–310 | DOI | MR | Zbl
[14] Krushkal V., Quinn F., “Subexponential groups in $4$-manifold topology”, Geom. Topol., 4 (2000), 407–430 | DOI | MR | Zbl
[15] Nicas A., Induction theorems for groups of homotopy manifold structures, Mem. Amer. Math. Soc., 267, 1982 | MR | Zbl
[16] Pedersen E. K., Quinn F., Ranicki A., “Controlled surgery with trivial local fundamental groups”, Proc. School on High-Dimensional Manifold Topology (ICTP, Trieste, 2001), eds. T. Farrell, W. Lück, Word Sci. Press, Singapore, 2003, 421–426 | MR | Zbl
[17] Quinn F., “A geometric formulation of surgery”, Topology of Manifolds, Proc. 1969 Georgia Topology Conference, Markham Press, Chicago, 1970, 500–511 | MR
[18] Quinn F., “Controlled and low-dimensional topology, and a theorem of Keldysh”, Abstracts of Int. Conf. on Geometric Topology, Discrete Geometry, and Set Theory, dedicated to the centennary of L. V. Keldysh (Moscow, August 24–28, 2004), Steklov Mathematical Institute, Moscow, 2004, 8
[19] Ranicki A., “The algebraic theory of surgery. II. Applications to topology”, Proc. London Math. Soc. (3), 40 (1980), 193–283 | DOI | MR | Zbl
[20] Ranicki A. A., Algebraic $L$-Theory and Topological Manifolds, Cambridge Univ. Press, Cambridge, 1992 | MR
[21] Wall C. T. C., Surgery on Compact Manifolds, Academic Press, New York, 1971 | MR | Zbl
[22] West J., “Mapping Hilbert cube manifolds to ANR's: A solution to a conjecture of Borsuk”, Ann. of Math., 106 (1977), 1–18 | DOI | MR | Zbl
[23] Yamasaki M., “$L$-groups of crystallographic groups”, Invent. Math., 88 (1987), 571–602 | DOI | MR | Zbl
[24] Yamasaki M., Relatively simple chain complexes, Preprint, 2004 | MR