Reductions between meager ideals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 213-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a nonmeager ideal, which is not a P-ideal yet $\mathrm{Fin}\times\varnothing$ is not reducible to it.
@article{FPM_2005_11_4_a16,
     author = {I. Farah},
     title = {Reductions between meager ideals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {213--219},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a16/}
}
TY  - JOUR
AU  - I. Farah
TI  - Reductions between meager ideals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 213
EP  - 219
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a16/
LA  - ru
ID  - FPM_2005_11_4_a16
ER  - 
%0 Journal Article
%A I. Farah
%T Reductions between meager ideals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 213-219
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a16/
%G ru
%F FPM_2005_11_4_a16
I. Farah. Reductions between meager ideals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 213-219. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a16/

[1] Hrušák M. MAD families and the rationals, Preprint, 2000

[2] Jalali-Naini S.-A., The monotone subsets of Cantor space, filters and descriptive set theory, PhD thesis, Oxford, 1976

[3] Just W., Mathias A. R. D., Prikry K., Simon P., “On the existence of large p-ideals”, J. Symbolic Logic, 55 (1990), 457–465 | DOI | MR | Zbl

[4] Laflamme C., “Strong meager properties for filters”, Fund. Math., 146 (1995), 283–293 | MR | Zbl

[5] Mathias A. R. D., “A remark on rare filters”, Infinite and Finite Sets, V. III, Coll. Math. Soc. Jänos Bolyai, 10, eds. A. Hajnal et al., North-Holland, 1975, 1095–1097 | MR

[6] Solecki S., “Analytic ideals”, Bull. Symbolic Logic, 2 (1996), 339–348 | DOI | MR | Zbl

[7] Solecki S., “Analytic ideals and their applications”, Ann. Pure Appl. Logic, 99 (1999), 51–72 | DOI | MR | Zbl

[8] Solecki S., “Filters and sequences”, Fund. Math., 163 (2000), 215–228 | MR | Zbl

[9] Solovay R., “A model of set theory in which every set of reals is Lebesgue measurable”, Ann. of Math., 92 (1970), 1–56 | DOI | MR | Zbl

[10] Talagrand M., “Compacts de fonctions mesurables et filters nonmesurables”, Studia Math., 67 (1980), 13–43 | MR | Zbl

[11] Todorcevic S., “Definable ideals and gaps in their quotients”, Set Theory: Techniques and Applications, eds. C. A. DiPrisco et al., Kluwer Academic, 1997, 213–226 | MR

[12] Zapletal J., “The nonstationary ideal and the other $\sigma$-ideals on $\omega_1$”, Trans. Amer. Math. Soc., 352:9 (2000), 3981–3993 | DOI | MR | Zbl