Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_4_a16, author = {I. Farah}, title = {Reductions between meager ideals}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {213--219}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a16/} }
I. Farah. Reductions between meager ideals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 213-219. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a16/
[1] Hrušák M. MAD families and the rationals, Preprint, 2000
[2] Jalali-Naini S.-A., The monotone subsets of Cantor space, filters and descriptive set theory, PhD thesis, Oxford, 1976
[3] Just W., Mathias A. R. D., Prikry K., Simon P., “On the existence of large p-ideals”, J. Symbolic Logic, 55 (1990), 457–465 | DOI | MR | Zbl
[4] Laflamme C., “Strong meager properties for filters”, Fund. Math., 146 (1995), 283–293 | MR | Zbl
[5] Mathias A. R. D., “A remark on rare filters”, Infinite and Finite Sets, V. III, Coll. Math. Soc. Jänos Bolyai, 10, eds. A. Hajnal et al., North-Holland, 1975, 1095–1097 | MR
[6] Solecki S., “Analytic ideals”, Bull. Symbolic Logic, 2 (1996), 339–348 | DOI | MR | Zbl
[7] Solecki S., “Analytic ideals and their applications”, Ann. Pure Appl. Logic, 99 (1999), 51–72 | DOI | MR | Zbl
[8] Solecki S., “Filters and sequences”, Fund. Math., 163 (2000), 215–228 | MR | Zbl
[9] Solovay R., “A model of set theory in which every set of reals is Lebesgue measurable”, Ann. of Math., 92 (1970), 1–56 | DOI | MR | Zbl
[10] Talagrand M., “Compacts de fonctions mesurables et filters nonmesurables”, Studia Math., 67 (1980), 13–43 | MR | Zbl
[11] Todorcevic S., “Definable ideals and gaps in their quotients”, Set Theory: Techniques and Applications, eds. C. A. DiPrisco et al., Kluwer Academic, 1997, 213–226 | MR
[12] Zapletal J., “The nonstationary ideal and the other $\sigma$-ideals on $\omega_1$”, Trans. Amer. Math. Soc., 352:9 (2000), 3981–3993 | DOI | MR | Zbl