Wild tiles in $\mathbb R^3$ with spherical boundaries
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 203-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

Wildly embedded tiles in $\mathbb R^3$ with spherical boundary are discussed. The construction of the topologically complicated, crumpled cube tiles is reviewed. We construct an infinite family of wildly embedded, cellular tiles with Fox–Artin-type wild points. Finally, a condition on the set of wild points on a cellular tile is given to show that certain wild cells cannot be tiles. Several observations are recorded for further investigations.
@article{FPM_2005_11_4_a15,
     author = {T. Tang},
     title = {Wild tiles in $\mathbb R^3$ with spherical boundaries},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {203--211},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a15/}
}
TY  - JOUR
AU  - T. Tang
TI  - Wild tiles in $\mathbb R^3$ with spherical boundaries
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 203
EP  - 211
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a15/
LA  - ru
ID  - FPM_2005_11_4_a15
ER  - 
%0 Journal Article
%A T. Tang
%T Wild tiles in $\mathbb R^3$ with spherical boundaries
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 203-211
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a15/
%G ru
%F FPM_2005_11_4_a15
T. Tang. Wild tiles in $\mathbb R^3$ with spherical boundaries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 203-211. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a15/

[1] Adams C. C., “Tilings of space by knotted tiles”, Math. Intelligencer, 17:2 (1995), 41–51 | DOI | MR | Zbl

[2] Adams C. C., “Knotted tillings”, The Mathematics of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer Academic, 1997, 1–8 | MR | Zbl

[3] Alford W. R., Ball B. J., “Some almost polyhedral wild arcs”, Duke Math. J., 30 (1963), 33–38 | DOI | MR | Zbl

[4] Blankinship W. A., Fox R. H., “Remarks on certain pathological open subsets of $3$-space and their fundamental groups”, Proc. Amer. Math. Soc., 1 (1950), 618–624 | DOI | MR | Zbl

[5] Burgess C. E., Cannon J. W., “Embeddings of surfaces in $\mathbb E^3$”, Rocky Mountain J. Math., 1 (1971), 259–344 | DOI | MR | Zbl

[6] Debrunner H. E., “Tiling three-space with handlebodies”, Studia Sci. Math. Hungar., 21 (1986), 201–202 ; 52–54 | MR | Zbl

[7] Fox R. H., Artin E., “Some wild cells and spheres in three dimensional spaces”, Ann. of Math., 49 (1948), 979–990 | DOI | MR | Zbl

[8] Grunbaum B., Shephard G. C., Tilings and Patterns, W. H. Freeman and Company, New York, 1987 | MR

[9] Kuperberg W., “Knotted lattice-like space fillers”, Discrete Comput. Geom., 13 (1995), 561–567 | DOI | MR | Zbl

[10] Kuperberg W., “Tiling the solid torus, the $3$-cube and the $3$-sphere with congruent knotted tori”, Intuitive Geometry (Budapest, 1995), Bolyai Soc. Math. Stud., 6, Janos Bolyai Math. Soc., Budapest, 1997, 399–406 | MR | Zbl

[11] Oh S., “Knotted solid tori decomposition of $B^3$ and $S^3$”, J. Knot Theory Ramifications, 5:3 (1996), 405–416 | DOI | MR | Zbl

[12] Schmitt P., “Another space-filling trefoil knot”, Discrete Comput. Geom., 13 (1995), 603–607 | DOI | MR | Zbl

[13] Schmitt P., “Space filling knots”, Beitr. Algebra Geom., 38:2 (1997), 307–313 | MR | Zbl

[14] Schulte E., “Space fillers of higher genus”, J. Combin. Theory. Ser. A, 68 (1994), 438–453 | DOI | MR | Zbl

[15] Tang T.-M., “Crumpled cube and solid horned sphere space fillers”, Discrete Comput. Geom., 31:3 (2004), 421–433 | MR | Zbl