Wild tiles in $\mathbb R^3$ with spherical boundaries
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 203-211
Voir la notice de l'article provenant de la source Math-Net.Ru
Wildly embedded tiles in $\mathbb R^3$ with spherical boundary are discussed. The construction of the topologically complicated, crumpled cube tiles is reviewed. We construct an infinite family of wildly embedded, cellular tiles with Fox–Artin-type wild points. Finally, a condition on the set of wild points on a cellular tile is given to show that certain wild cells cannot be tiles. Several observations are recorded for further investigations.
@article{FPM_2005_11_4_a15,
author = {T. Tang},
title = {Wild tiles in $\mathbb R^3$ with spherical boundaries},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {203--211},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a15/}
}
T. Tang. Wild tiles in $\mathbb R^3$ with spherical boundaries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 203-211. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a15/