Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 185-196
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a topological invariant for the canonical decomposition on prime and round handles associated with a Morse–Smale flow on a closed 3-manifold. We prove that the flows are topologically equivalent if and only if their invariants coincide.
@article{FPM_2005_11_4_a13,
author = {A. O. Prishlyak},
title = {Complete topological invariants of {Morse--Smale} flows and handle decompositions of 3-manifolds},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {185--196},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/}
}
TY - JOUR AU - A. O. Prishlyak TI - Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 185 EP - 196 VL - 11 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/ LA - ru ID - FPM_2005_11_4_a13 ER -
%0 Journal Article %A A. O. Prishlyak %T Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds %J Fundamentalʹnaâ i prikladnaâ matematika %D 2005 %P 185-196 %V 11 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/ %G ru %F FPM_2005_11_4_a13
A. O. Prishlyak. Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 185-196. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/