Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 185-196

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a topological invariant for the canonical decomposition on prime and round handles associated with a Morse–Smale flow on a closed 3-manifold. We prove that the flows are topologically equivalent if and only if their invariants coincide.
@article{FPM_2005_11_4_a13,
     author = {A. O. Prishlyak},
     title = {Complete topological invariants of {Morse--Smale} flows and handle decompositions of 3-manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/}
}
TY  - JOUR
AU  - A. O. Prishlyak
TI  - Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 185
EP  - 196
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/
LA  - ru
ID  - FPM_2005_11_4_a13
ER  - 
%0 Journal Article
%A A. O. Prishlyak
%T Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 185-196
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/
%G ru
%F FPM_2005_11_4_a13
A. O. Prishlyak. Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 185-196. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/