Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 185-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a topological invariant for the canonical decomposition on prime and round handles associated with a Morse–Smale flow on a closed 3-manifold. We prove that the flows are topologically equivalent if and only if their invariants coincide.
@article{FPM_2005_11_4_a13,
     author = {A. O. Prishlyak},
     title = {Complete topological invariants of {Morse--Smale} flows and handle decompositions of 3-manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/}
}
TY  - JOUR
AU  - A. O. Prishlyak
TI  - Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 185
EP  - 196
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/
LA  - ru
ID  - FPM_2005_11_4_a13
ER  - 
%0 Journal Article
%A A. O. Prishlyak
%T Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 185-196
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/
%G ru
%F FPM_2005_11_4_a13
A. O. Prishlyak. Complete topological invariants of Morse--Smale flows and handle decompositions of 3-manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 185-196. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a13/

[1] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya polei na zamknutykh dvumernykh mnogoobraziyakh”, Uspekhi mat. nauk, 41:1 (1986), 149–169 | MR | Zbl

[2] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya kaskadov na zamknutykh dvumernykh mnogoobraziyakh”, Uspekhi mat. nauk, 45:1 (1990), 1–35 | MR | Zbl

[3] Afraimovich V. S., Shilnikov L. P., “Ob osobykh mnozhestvakh sistem Morsa–Smeila”, Tr. MMO, 28, 1973, 181–214 | Zbl

[4] Vlasenko I., “Polnyi invariant diffeomorfizma Morsa–Smeila na dvumernykh mnogoobraziyakh”, Nekotorye voprosy sovremennoi matematiki, T. 25, ed. V. V. Sharko (red.), In-t matematiki NANU, Kiev, 1998, 60–93 | MR

[5] Omeshkov A. A., Sharko V. V., “O klassifikatsii potokov Morsa–Smeila na dvumernykh mnogoobraziyakh”, Mat. sb., 189:8 (1998), 93–140 | MR

[6] Prishlyak A. O., “O vlozhennykh v poverkhnost grafakh”, Uspekhi mat. nauk, 52:4 (1997), 211–212 | MR | Zbl

[7] Prishlyak A. O., “Vektornye polya Morsa–Smeila s konechnym chislom osobykh traektorii na trekhmernykh mnogoobraziyakh”, Dokl. NAN Ukrainy, 6 (1998), 43–47 | MR | Zbl

[8] Prishlyak A. O., “Vektornye polya Morsa–Smeila bez zamknutykh traektorii na trekhmernykh mnogoobraziyakh”, Mat. zametki, 71:2 (2002), 230–235 | MR | Zbl

[9] Prishlyak A. O., “Topologicheskaya ekvivalentnost funktsii i vektornykh polei Morsa–Smeila na trekhmernykh mnogoobraziyakh”, Topologiya i geometriya, Trudy Ukrainskogo mat. kongressa. 2001, Kiev, 2003, 29–38 | MR | Zbl

[10] Umanskii Ya. L., “Neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti trekhmernykh dinamicheskikh sistem Morsa–Smeila s konechnym chislom osobykh traektorii”, Mat. sb., 181:2 (1990), 212–239

[11] Asimov D., “Round handles and non-singular Morse–Smale flows”, Ann. Math., 102 (1975), 41–54 | DOI | MR | Zbl

[12] Asimov D., “Notes on the topology of vector fields and flows”, Visualization 93, San Jose, CA, 1993, 1–23

[13] Beguin F., Bonatti C., “Flots de Smale en dimension $3$: Présentation finie de voisinages invariants d'ensembles selles”, Topology, 41 (2002), 119–162 | DOI | MR | Zbl

[14] Bonatti C., Langevin R., Difféomorphismes de Smale des surfaces, Soc. Math. France, 250, Astérisque, Paris, 1998 | MR | Zbl

[15] Fleitas G., “Classification of gradient-like flows in dimension three”, Bol. Soc. Brasil Mat., 2:6 (1975), 155–183 | DOI | MR

[16] Frank J., “Symbolyc dynamics in flows on three-manifolds”, Trans. Amer. Math. Soc., 279 (1983), 231–236 | DOI | MR | Zbl

[17] Peixoto M., “On the classification of flows on two-manifolds”, Dynamical Systems, ed. M. Peixoto, Academic Press, 1973, 389–419 | MR

[18] Plachta L., “The combinatorics of gradient-like flows and foliations on closed surfaces. I. Topological classification”, Topology Appl., 128:1 (2003), 63–91 | DOI | MR | Zbl

[19] De Rezende K., “Smale flow on the three-sphere”, Trans. Amer. Math. Soc., 303:1 (1987), 283–310 | DOI | MR | Zbl

[20] Wang X., “The C-algebras of Morse–Smale flows on two-manifolds”, Ergodic Theory Dynam. Systems, 10 (1990), 565–597 | DOI | MR | Zbl