Structure sets of triples of manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 153-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure set of a given manifold fits into a surgery exact sequence, which is the main tool for classification of manifolds. In the present paper, we describe relations between various structure sets and groups of obstructions which naturally arise for triples of manifolds. The main results are given by commutative braids and diagrams of exact sequences.
@article{FPM_2005_11_4_a11,
     author = {Yu. V. Muranov and R. Jimenez},
     title = {Structure sets of triples of manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {153--172},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a11/}
}
TY  - JOUR
AU  - Yu. V. Muranov
AU  - R. Jimenez
TI  - Structure sets of triples of manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 153
EP  - 172
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a11/
LA  - ru
ID  - FPM_2005_11_4_a11
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%A R. Jimenez
%T Structure sets of triples of manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 153-172
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a11/
%G ru
%F FPM_2005_11_4_a11
Yu. V. Muranov; R. Jimenez. Structure sets of triples of manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 153-172. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a11/

[1] Maleshich I., Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k rasschepleniyu v korazmernosti 2”, Mat. zametki, 69 (2001), 52–73 | MR | Zbl

[2] Muranov Yu. V., “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. mat., 59 (1995), 107–132 | MR | Zbl

[3] Muranov Yu. V., “Zadacha rasschepleniya”, Tr. MIRAN im. V. A. Steklova, 212, 1996, 123–146 | MR

[4] Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k perestroikam i rasschepleniyu dlya par mnogoobrazii”, Mat. sb., 188 (1997), 127–142 | MR | Zbl

[5] Muranov Yu. V., Repovsh D., Spaggiari F., “Perestroika troek mnogoobrazii”, Mat. sb., 194:8 (2003), 139–160 | MR | Zbl

[6] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera–Livsi abelevykh $2$-grupp”, Mat. sbornik, 181 (1990), 1061–1098 | MR | Zbl

[7] Muranov Yu. V., Khimenez R., “Otobrazheniya transfera dlya troek mnogoobrazii”, Mat. zametki, 79:3 (2006), 420–433 (to appear) | MR | Zbl

[8] Khemblton I., Kharshiladze A. F., “Spektralnaya posledovatelnost v teorii perestroek”, Mat. sbornik, 183 (1992), 3–14 | MR

[9] Bak A., Muranov Yu. V., “Splitting along submanifolds and $\mathbb L$-spectra”, J. Math. Sci., 123 (2004), 4169–4183 | DOI | MR

[10] Browder W., Livesay G. R., “Fixed point free involutions on homotopy spheres”, Bull. Amer. Math. Soc., 73 (1967), 242–245 | DOI | MR | Zbl

[11] Browder W., Quinn F., “A surgery theory for $G$-manifolds and stratified spaces”, Manifolds, Univ. of Tokyo Press, 1975, 27–36 | MR

[12] Cappell S. E., Shaneson J. L., “Pseudo-free actions. I”, Algebraic Topology (Aarhus, 1978), Lect. Notes Math., 763, Springer, Berlin, 1979, 395–447 | MR

[13] Cohen M. M., A Course in Simple-Homotopy Theory, Springer, New York, 1973 | MR

[14] Hambleton I., “Projective surgery obstructions on closed manifolds”, Algebraic K-Theory, Proc. Conf., Part II (Oberwolfach 1980), Lect. Notes Math., 967, Springer, Berlin, 1982, 101–131 | MR

[15] Hambleton I., Pedersen E., Topological equivalences of linear representations for cyclic groups, Preprint MPI, 1997

[16] Hambleton I., Ranicki A., Taylor L., “Round $L$-theory”, J. Pure Appl. Algebra, 47 (1987), 131–154 | DOI | MR | Zbl

[17] Lopez de Medrano S., Involutions on Manifolds, Springer, Berlin, 1971 | MR | Zbl

[18] Lück W., Ranicki A. A., “Surgery transfer”, Algebraic Topology and Transformation Groups, Lect. Notes Math., 1361, Springer, Berlin, 1988, 167–246 | MR

[19] Lück W., Ranicki A. A., “Surgery obstructions of fibre bundles”, J. Pure Appl. Algebra, 81:2 (1992), 139–189 | DOI | MR | Zbl

[20] Muranov Yu. V., Repovš D., Jimenez R., Surgery spectral sequence and stratified manifolds, Preprint. V. 42, no. 935, University of Lujubljana, 2004

[21] Ranicki A. A., “The total surgery obstruction”, Algebraic Topology (Aarhus, 1978), Lect. Notes Math., 763, Springer, Berlin, 1979, 275–316 | MR

[22] Ranicki A. A., Exact Sequences in the Algebraic Theory of Surgery, Math. Notes., 26, Princeton Univ. Press, Princeton, 1981 | MR | Zbl

[23] Ranicki A. A., Algebraic $L$-Theory and Topological Manifolds, Cambridge Tracts Math., Cambridge Univ. Press, 1992 | MR

[24] Switzer R., Algebraic Topology – Homotopy and Homology, Grund. Math. Wiss., 212, Springer, Berlin, 1975 | MR | Zbl

[25] Wall C. T. C., Surgery on Compact Manifolds, Academic Press, London, 1970 ; Second Edition, ed. A. A. Ranicki, AMS, Providence, 1999 | MR | MR

[26] Weinberger S., The Topological Classification of Stratified Spaces, The University of Chicago Press, Chicago, 1994 | MR | Zbl