Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_4_a11, author = {Yu. V. Muranov and R. Jimenez}, title = {Structure sets of triples of manifolds}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {153--172}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a11/} }
Yu. V. Muranov; R. Jimenez. Structure sets of triples of manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 153-172. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a11/
[1] Maleshich I., Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k rasschepleniyu v korazmernosti 2”, Mat. zametki, 69 (2001), 52–73 | MR | Zbl
[2] Muranov Yu. V., “Gruppy prepyatstvii k rasschepleniyu i kvadratichnye rasshireniya antistruktur”, Izv. RAN. Ser. mat., 59 (1995), 107–132 | MR | Zbl
[3] Muranov Yu. V., “Zadacha rasschepleniya”, Tr. MIRAN im. V. A. Steklova, 212, 1996, 123–146 | MR
[4] Muranov Yu. V., Repovsh D., “Gruppy prepyatstvii k perestroikam i rasschepleniyu dlya par mnogoobrazii”, Mat. sb., 188 (1997), 127–142 | MR | Zbl
[5] Muranov Yu. V., Repovsh D., Spaggiari F., “Perestroika troek mnogoobrazii”, Mat. sb., 194:8 (2003), 139–160 | MR | Zbl
[6] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera–Livsi abelevykh $2$-grupp”, Mat. sbornik, 181 (1990), 1061–1098 | MR | Zbl
[7] Muranov Yu. V., Khimenez R., “Otobrazheniya transfera dlya troek mnogoobrazii”, Mat. zametki, 79:3 (2006), 420–433 (to appear) | MR | Zbl
[8] Khemblton I., Kharshiladze A. F., “Spektralnaya posledovatelnost v teorii perestroek”, Mat. sbornik, 183 (1992), 3–14 | MR
[9] Bak A., Muranov Yu. V., “Splitting along submanifolds and $\mathbb L$-spectra”, J. Math. Sci., 123 (2004), 4169–4183 | DOI | MR
[10] Browder W., Livesay G. R., “Fixed point free involutions on homotopy spheres”, Bull. Amer. Math. Soc., 73 (1967), 242–245 | DOI | MR | Zbl
[11] Browder W., Quinn F., “A surgery theory for $G$-manifolds and stratified spaces”, Manifolds, Univ. of Tokyo Press, 1975, 27–36 | MR
[12] Cappell S. E., Shaneson J. L., “Pseudo-free actions. I”, Algebraic Topology (Aarhus, 1978), Lect. Notes Math., 763, Springer, Berlin, 1979, 395–447 | MR
[13] Cohen M. M., A Course in Simple-Homotopy Theory, Springer, New York, 1973 | MR
[14] Hambleton I., “Projective surgery obstructions on closed manifolds”, Algebraic K-Theory, Proc. Conf., Part II (Oberwolfach 1980), Lect. Notes Math., 967, Springer, Berlin, 1982, 101–131 | MR
[15] Hambleton I., Pedersen E., Topological equivalences of linear representations for cyclic groups, Preprint MPI, 1997
[16] Hambleton I., Ranicki A., Taylor L., “Round $L$-theory”, J. Pure Appl. Algebra, 47 (1987), 131–154 | DOI | MR | Zbl
[17] Lopez de Medrano S., Involutions on Manifolds, Springer, Berlin, 1971 | MR | Zbl
[18] Lück W., Ranicki A. A., “Surgery transfer”, Algebraic Topology and Transformation Groups, Lect. Notes Math., 1361, Springer, Berlin, 1988, 167–246 | MR
[19] Lück W., Ranicki A. A., “Surgery obstructions of fibre bundles”, J. Pure Appl. Algebra, 81:2 (1992), 139–189 | DOI | MR | Zbl
[20] Muranov Yu. V., Repovš D., Jimenez R., Surgery spectral sequence and stratified manifolds, Preprint. V. 42, no. 935, University of Lujubljana, 2004
[21] Ranicki A. A., “The total surgery obstruction”, Algebraic Topology (Aarhus, 1978), Lect. Notes Math., 763, Springer, Berlin, 1979, 275–316 | MR
[22] Ranicki A. A., Exact Sequences in the Algebraic Theory of Surgery, Math. Notes., 26, Princeton Univ. Press, Princeton, 1981 | MR | Zbl
[23] Ranicki A. A., Algebraic $L$-Theory and Topological Manifolds, Cambridge Tracts Math., Cambridge Univ. Press, 1992 | MR
[24] Switzer R., Algebraic Topology – Homotopy and Homology, Grund. Math. Wiss., 212, Springer, Berlin, 1975 | MR | Zbl
[25] Wall C. T. C., Surgery on Compact Manifolds, Academic Press, London, 1970 ; Second Edition, ed. A. A. Ranicki, AMS, Providence, 1999 | MR | MR
[26] Weinberger S., The Topological Classification of Stratified Spaces, The University of Chicago Press, Chicago, 1994 | MR | Zbl