Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2005_11_4_a10, author = {V. O. Manturov}, title = {The {Khovanov} complex for virtual links}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {127--152}, publisher = {mathdoc}, volume = {11}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a10/} }
V. O. Manturov. The Khovanov complex for virtual links. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 127-152. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a10/
[1] Manturo V. O., “Polinom Khovanova dlya virtualnykh uzlov”, Dokl. RAN, 398:1 (2004), 15–18 | MR
[2] Manturov V. O., “Dokazatelstvo gipotezy V. A. Vasileva o planarnosti singulyarnykh zatseplenii”, Izv. RAN. Ser. mat., 69:5 (2005), 169–178 | MR | Zbl
[3] Manturov V. O., “Teoriya uzlov”, Regulyarnaya i khaoticheskaya dinamika, RKhD, M.; Izhevsk, 2005
[4] Bar-Natan D., “On Khovanov's categorification of the Jones polynomial”, Algebr. Geom. Topol., 2:16 (2002), 337–370 | DOI | MR | Zbl
[5] Bar-Natan D., Khovanov's homology for tangles and cobordisms, 2004; arXiv: /math.GT/0410495
[6] Jacobsson M., An invariant of link cobordisms from Khovanov's homology theory, , 2002 arXiv: /math.GT/0206303 | MR
[7] Jones V. F. R., “A polynomial invariant for links via Neumann algebras”, Bull. Amer. Math. Soc., 129 (1985), 103–112 | DOI | MR
[8] Kauffman L. H., “State models and the Jones polynomial”, Topology, 26 (1987), 395–407 | DOI | MR | Zbl
[9] Kauffman L. H., “Virtual knot theory”, European J. Combin., 20:7 (1999), 662–690 | DOI | MR
[10] Khovanov M., “A categorification of the Jones polynomial”, Duke Math. J., 101:3 (1997), 359–426 | DOI | MR
[11] Khovanov M., A functor-valued invariant of tangles, 2001 ; arXiv: /math.QA/0103190 | MR
[12] Khovanov M., Link homology and Frobenius extensions, 2004; arXiv: /math.GT/0411447
[13] Manturov V. O., “Kauffman-like polynomial and curves in $2$-surfaces”, J. Knot Theory Ramifications, 12:8 (2003), 1145–1153 | DOI | MR | Zbl