The Khovanov complex for virtual links
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 127-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the most outstanding achievements of the modern knot theory is Khovanov's categorification of Jones polynomials. In the present paper, we construct the homology theory for virtual knots. An important obstruction to this theory (unlike the case of classical knots) is the nonorientability of “atoms”; an atom is a two-dimensional combinatorial object closely related with virtual link diagrams. The problem is solved directly for the field $\mathbb Z_{2}$, and also by using some geometrical constructions applied to atoms. We discuss a generalization proposed by Khovanov; he modifies the initial homology theory by using the Frobenius extension. We construct analogues of these theories for virtual knots, both algebraically and geometrically (by using atoms).
@article{FPM_2005_11_4_a10,
     author = {V. O. Manturov},
     title = {The {Khovanov} complex for virtual links},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {127--152},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a10/}
}
TY  - JOUR
AU  - V. O. Manturov
TI  - The Khovanov complex for virtual links
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 127
EP  - 152
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a10/
LA  - ru
ID  - FPM_2005_11_4_a10
ER  - 
%0 Journal Article
%A V. O. Manturov
%T The Khovanov complex for virtual links
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 127-152
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a10/
%G ru
%F FPM_2005_11_4_a10
V. O. Manturov. The Khovanov complex for virtual links. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 127-152. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a10/

[1] Manturo V. O., “Polinom Khovanova dlya virtualnykh uzlov”, Dokl. RAN, 398:1 (2004), 15–18 | MR

[2] Manturov V. O., “Dokazatelstvo gipotezy V. A. Vasileva o planarnosti singulyarnykh zatseplenii”, Izv. RAN. Ser. mat., 69:5 (2005), 169–178 | MR | Zbl

[3] Manturov V. O., “Teoriya uzlov”, Regulyarnaya i khaoticheskaya dinamika, RKhD, M.; Izhevsk, 2005

[4] Bar-Natan D., “On Khovanov's categorification of the Jones polynomial”, Algebr. Geom. Topol., 2:16 (2002), 337–370 | DOI | MR | Zbl

[5] Bar-Natan D., Khovanov's homology for tangles and cobordisms, 2004; arXiv: /math.GT/0410495

[6] Jacobsson M., An invariant of link cobordisms from Khovanov's homology theory, , 2002 arXiv: /math.GT/0206303 | MR

[7] Jones V. F. R., “A polynomial invariant for links via Neumann algebras”, Bull. Amer. Math. Soc., 129 (1985), 103–112 | DOI | MR

[8] Kauffman L. H., “State models and the Jones polynomial”, Topology, 26 (1987), 395–407 | DOI | MR | Zbl

[9] Kauffman L. H., “Virtual knot theory”, European J. Combin., 20:7 (1999), 662–690 | DOI | MR

[10] Khovanov M., “A categorification of the Jones polynomial”, Duke Math. J., 101:3 (1997), 359–426 | DOI | MR

[11] Khovanov M., A functor-valued invariant of tangles, 2001 ; arXiv: /math.QA/0103190 | MR

[12] Khovanov M., Link homology and Frobenius extensions, 2004; arXiv: /math.GT/0411447

[13] Manturov V. O., “Kauffman-like polynomial and curves in $2$-surfaces”, J. Knot Theory Ramifications, 12:8 (2003), 1145–1153 | DOI | MR | Zbl