On presentations of generalizations of braids with few generators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

In his initial paper on braids, E. Artin gave a presentation with two generators for an arbitrary braid group. We give analogues of the Artin's presentation for various generalizations of braids.
@article{FPM_2005_11_4_a1,
     author = {V. V. Vershinin},
     title = {On presentations of generalizations of braids with few generators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a1/}
}
TY  - JOUR
AU  - V. V. Vershinin
TI  - On presentations of generalizations of braids with few generators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 23
EP  - 32
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a1/
LA  - ru
ID  - FPM_2005_11_4_a1
ER  - 
%0 Journal Article
%A V. V. Vershinin
%T On presentations of generalizations of braids with few generators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 23-32
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a1/
%G ru
%F FPM_2005_11_4_a1
V. V. Vershinin. On presentations of generalizations of braids with few generators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 23-32. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a1/

[1] Briskorn E., “O gruppakh kos (po V. I. Arnoldu)”, Matematika (sb. perevodov), 18:3 (1974), 46–59

[2] Vershinin V. V., “Gruppy kos i prostranstva petel”, Uspekhi mat. nauk, 54:2 (1999), 3–84 | MR | Zbl

[3] Kokster G. S. M., Mozer U. O. Dzh., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980 | MR

[4] Artin E., “Theorie der Zöpfe”, Abh. Math. Sem. Univ. Hamburg, 4 (1925), 47–72 | DOI | Zbl

[5] Baez J. C., “Link invariants of finite type and perturbation theory”, Lett. Math. Phys., 26:1 (1992), 43–51 | DOI | MR | Zbl

[6] Bessis D., Michel J., Explicit presentations for exceptional braid groups, , 2003 arXiv: /math.GR/0312191 | MR

[7] Birman J. S., “New points of view in knot theory”, Bull. Amer. Math. Soc., 28:2 (1993), 253–387 | DOI | MR

[8] Birman J. S., Ko K. H., Lee S. J., “A new approach to the word and conjugacy problems in the braid groups”, Adv. Math., 139:2 (1998), 322–353 | DOI | MR | Zbl

[9] Broué M., Malle G., Rouquier R., “Complex reflection groups, braid groups, Hecke algebras”, J. Reine Angew. Math., 500 (1998), 127–190 | MR | Zbl

[10] Deligne P., “Les immeubles des groupes de tresses généralisés”, Invent. Math., 17 (1972), 273–302 | DOI | MR | Zbl

[11] Fadell E., Van Buskirk J., “The braid groups of $E^2$ and $S^2$”, Duke Math. J., 29 (1962), 243–257 | DOI | MR | Zbl

[12] Fenn R., Rimányi R., Rourke C., “The braid-permutation group”, Topology, 36:1 (1997), 123–135 | DOI | MR | Zbl

[13] Sergiescu V., “Graphes planaires et présentations des groupes de tresses”, Math. Z., 214 (1993), 477–490 | DOI | MR | Zbl

[14] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Can. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl

[15] Vershinin V. V., On the singular braid monoid, , 2003 arXiv: /math.GR/0309339 | MR

[16] Zariski O., “On the Poincaré group of rational plane curves”, Amer. J. Math., 58 (1936), 607–619 | DOI | MR | Zbl