Nonpolyhedral proof of the Michael finite-dimensional selection theorem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a new method of the proof of the Michael finite-dimensional selection theorem. Using it, we prove a new selection theorem.
@article{FPM_2005_11_4_a0,
     author = {S. M. Ageev},
     title = {Nonpolyhedral proof of the {Michael} finite-dimensional selection theorem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
TI  - Nonpolyhedral proof of the Michael finite-dimensional selection theorem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 3
EP  - 22
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a0/
LA  - ru
ID  - FPM_2005_11_4_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%T Nonpolyhedral proof of the Michael finite-dimensional selection theorem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 3-22
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a0/
%G ru
%F FPM_2005_11_4_a0
S. M. Ageev. Nonpolyhedral proof of the Michael finite-dimensional selection theorem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 4, pp. 3-22. http://geodesic.mathdoc.fr/item/FPM_2005_11_4_a0/

[1] Semënov P. V., Schepin E. V., “Ob universalnosti nulmernoi selektsionnoi teoremy”, Funktsion. analiz i ego pril., 26:2 (1992), 36–40 | MR | Zbl

[2] Schepin E. V., Brodskii N. B., “Selektsii filtrovannykh mnogoznachnykh otobrazhenii”, Tr. MIRAN im. V. A. Steklova, 212, 1996, 220–240 | MR | Zbl

[3] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[4] Ageev S., Non-polyhedral proof of Uspenskij's Selection Theorem, Preprint, 2001

[5] Ancel F. D., “The role of countable dimensionality in the theory of cell-like relations”, Trans. Amer. Math. Soc., 287 (1985), 1–40 | DOI | MR | Zbl

[6] Bessaga C., Pelchinskii A., Selected Topics in Infinite-Dimensional Topology, PWN, Warsaw, 1975 | Zbl

[7] Bestvina M., Mogilskii J., “Characterizing certain incomplete infinite-dimensional absolute retracts”, Michigan Math. J., 33 (1986), 291–313 | DOI | MR | Zbl

[8] Dugundji J., Michael E., “On local and uniformly local topological properties”, Proc. Amer. Math. Soc., 7 (1956), 304–308 | DOI | MR

[9] Hu S. T., Theory of retracts, Wayne State Univ. Press, 1965 | MR | Zbl

[10] Kelley J. L., General Topology, Grad. Texts Math., 27, Springer, Berlin, 1975 | MR | Zbl

[11] Michael E., “Continuous selections, I”, Ann. of Math. (2), 63 (1956), 361–382 | DOI | MR | Zbl

[12] Michael E., “Continuous selections, II”, Ann. of Math. (2), 64 (1956), 562–580 | DOI | MR | Zbl

[13] Michael E., “Continuous selections, III”, Ann. of Math. (2), 65 (1957), 375–390 | DOI | MR | Zbl

[14] Repovš D., Semenov P. V., Continuous Selections of Multivalued Mappings, Kluwer Academic, 1998 | MR | Zbl

[15] Rourke C. P., Sanderson B. J., Introduction to Piece-Linear Topology, Springer, 1982 | MR | Zbl

[16] Uspenskij V. V., “A selection theorem for $\mathbf C$-spaces”, Topology Appl., 85 (1998), 351–374 | DOI | MR | Zbl