Inversion of matrices over a~pseudocomplemented lattice
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 139-154
Voir la notice de l'article provenant de la source Math-Net.Ru
We compute the greatest solutions of systems of linear equations over a lattice $(P,\leq)$. We also present some applications of the obtained results to lattice matrix theory. Let $(P,\leq)$ be a pseudocomplemented lattice with $\tilde0$ and $\tilde1$ and let $A=\|a_{ij}\|_{n\times n}$, where $a_{ij}\in P$ for $i,j=1,\dots,n$. Let $A^*=\|a'_{ij}\|_{n\times n}$ and $a'_{ij}=\bigwedge\limits_{\substack{r=1\\ r\ne j}}^na_{ri}^*$ for $i,j=1,\dots,n$, where $a^*$ is the pseudocomplement of $a\in P$ in $(P,\leq)$. A matrix $A$ has a right inverse over $(P,\leq)$ if and only if $A\cdot A^*=E$ over $(P,\leq)$. If $A$ has a right inverse over $(P,\leq)$, then $A^*$ is the greatest right inverse of $A$ over $(P,\leq)$. The matrix $A$ has a right inverse over $(P,\leq)$ if and only if $A$ is a column orthogonal over $(P,\leq)$. The matrix $D=A\cdot A^*$ is the greatest diagonal such that $A$ is a left divisor of $D$ over $(P,\leq)$. Invertible matrices over a distributive lattice $(P,\leq)$ form the general linear group $\mathrm{GL}_n (P,\leq)$ under multiplication. Let $(P,\leq)$ be a finite distributive lattice and let $k$ be the number of components of the covering graph $\Gamma(\operatorname{join}(P,\leq)-\{\tilde0\},\leq)$, where $\operatorname{join}(P,\leq)$ is the set of join irreducible elements of $(P,\leq)$. Then $\mathrm{GL}_n(P,\leq)\cong S_n^k$. We give some further results concerning inversion of matrices over a pseudocomplemented lattice.
@article{FPM_2005_11_3_a9,
author = {E. E. Marenich and V. G. Kumarov},
title = {Inversion of matrices over a~pseudocomplemented lattice},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {139--154},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a9/}
}
TY - JOUR AU - E. E. Marenich AU - V. G. Kumarov TI - Inversion of matrices over a~pseudocomplemented lattice JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 139 EP - 154 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a9/ LA - ru ID - FPM_2005_11_3_a9 ER -
E. E. Marenich; V. G. Kumarov. Inversion of matrices over a~pseudocomplemented lattice. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 139-154. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a9/