Inversion of matrices over a~pseudocomplemented lattice
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 139-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the greatest solutions of systems of linear equations over a lattice $(P,\leq)$. We also present some applications of the obtained results to lattice matrix theory. Let $(P,\leq)$ be a pseudocomplemented lattice with $\tilde0$ and $\tilde1$ and let $A=\|a_{ij}\|_{n\times n}$, where $a_{ij}\in P$ for $i,j=1,\dots,n$. Let $A^*=\|a'_{ij}\|_{n\times n}$ and $a'_{ij}=\bigwedge\limits_{\substack{r=1\\ r\ne j}}^na_{ri}^*$ for $i,j=1,\dots,n$, where $a^*$ is the pseudocomplement of $a\in P$ in $(P,\leq)$. A matrix $A$ has a right inverse over $(P,\leq)$ if and only if $A\cdot A^*=E$ over $(P,\leq)$. If $A$ has a right inverse over $(P,\leq)$, then $A^*$ is the greatest right inverse of $A$ over $(P,\leq)$. The matrix $A$ has a right inverse over $(P,\leq)$ if and only if $A$ is a column orthogonal over $(P,\leq)$. The matrix $D=A\cdot A^*$ is the greatest diagonal such that $A$ is a left divisor of $D$ over $(P,\leq)$. Invertible matrices over a distributive lattice $(P,\leq)$ form the general linear group $\mathrm{GL}_n (P,\leq)$ under multiplication. Let $(P,\leq)$ be a finite distributive lattice and let $k$ be the number of components of the covering graph $\Gamma(\operatorname{join}(P,\leq)-\{\tilde0\},\leq)$, where $\operatorname{join}(P,\leq)$ is the set of join irreducible elements of $(P,\leq)$. Then $\mathrm{GL}_n(P,\leq)\cong S_n^k$. We give some further results concerning inversion of matrices over a pseudocomplemented lattice.
@article{FPM_2005_11_3_a9,
     author = {E. E. Marenich and V. G. Kumarov},
     title = {Inversion of matrices over a~pseudocomplemented lattice},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {139--154},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a9/}
}
TY  - JOUR
AU  - E. E. Marenich
AU  - V. G. Kumarov
TI  - Inversion of matrices over a~pseudocomplemented lattice
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 139
EP  - 154
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a9/
LA  - ru
ID  - FPM_2005_11_3_a9
ER  - 
%0 Journal Article
%A E. E. Marenich
%A V. G. Kumarov
%T Inversion of matrices over a~pseudocomplemented lattice
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 139-154
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a9/
%G ru
%F FPM_2005_11_3_a9
E. E. Marenich; V. G. Kumarov. Inversion of matrices over a~pseudocomplemented lattice. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 139-154. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a9/

[1] Aigner M., Kombinatornaya teoriya, Mir, M., 1982 | MR

[2] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[3] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982 | MR

[4] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[5] Skornyakov L. A., Elementy teorii struktur, Nauka, M., 1970 | MR

[6] Skornyakov L. A., “Obratimye matritsy nad distributivnymi strukturami”, Sib. mat. zhurn., XXVII:2 (1986), 182–185 | MR | Zbl

[7] Skornyakov L. A., Egorova D. P., “Normalnye podgruppy polnoi lineinoi gruppy stepeni $3$ nad distributivnoi strukturoi”, Algebra i logika, 23:6 (1984), 670–683 | MR | Zbl

[8] Stenli R., Perechislitelnaya kombinatorika, Mir, M., 1990 | MR

[9] Kim Ki Hang, Boolean Matrix Theory and Applications, Marcel Dekker, New York, 1982 | MR | Zbl

[10] Luce R. D., “A note on Boolean matrix theory”, Proc. Amer. Math. Soc., 3:2 (1952), 382–388 | DOI | MR | Zbl

[11] Reutenauer Ch., Staubing H., “Inversion of matrices over a commutative semiring”, J. Algebra, 88:2 (1984), 350–360 | DOI | MR | Zbl

[12] Rutherford D. E., “Inverses of Boolean matrices”, Proc. Glasgow Math. Assoc., 6:1 (1963), 49–53 | DOI | MR | Zbl

[13] Wedderburn J. H. M., “Boolean linear associative algebra”, Ann. Math., 35:1 (1934), 185–194 | DOI | MR | Zbl