On a~problem from the Kourovka Notebook
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 119-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, it is proved that if a group $G$ coincides with its commutator subgroup, is generated by a finite set of classes of conjugate elements, and contains a proper minimal normal subgroup $A$ such that the factor group $G/A$ coincides with the normal closure of one element, then $G$ coincides with the normal closure of an element. From this a positive answer to question 5.52 from the Kourovka Notebook for the group with the condition of minimality on normal subgroups follows. We have found a necessary and sufficient condition for a group coinciding with its commutator subgroup and generated by a finite set of classes of conjugate elements not to coincide with the normal closure of any element.
@article{FPM_2005_11_3_a7,
     author = {S. V. Larin},
     title = {On a~problem from the {Kourovka} {Notebook}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {119--125},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a7/}
}
TY  - JOUR
AU  - S. V. Larin
TI  - On a~problem from the Kourovka Notebook
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 119
EP  - 125
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a7/
LA  - ru
ID  - FPM_2005_11_3_a7
ER  - 
%0 Journal Article
%A S. V. Larin
%T On a~problem from the Kourovka Notebook
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 119-125
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a7/
%G ru
%F FPM_2005_11_3_a7
S. V. Larin. On a~problem from the Kourovka Notebook. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 119-125. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a7/

[1] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl

[2] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, Izd. 14-e, Novosibirsk, 1999 | MR

[3] Sudzuki M., Stroenie gruppy i stroenie struktury ee podgrupp, IL, M., 1960