Quivers of semi-maximal rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 215-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the set of quivers of semi-maximal rings is investigated. It is proved that the elements of this set are formed by the elements of the set of quivers of tiled orders and that the set of quivers of tiled orders with $n$ vertices is determined by the integer points of a convex polyhedral domain that lie in the nonnegative part of the space $\mathbb R^{n^2-n}$. It is also proved that the set of quivers of tiled orders with $n$ vertices contains all simple oriented strongly connected graphs with $n$ vertices and $n$ loops, does not contain any graphs with $n$ vertices and $n-1$ loops, and contains only a part of the graphs with $n$ vertices and $m$ ($m$) loops.
@article{FPM_2005_11_3_a14,
     author = {S. I. Tsupiy},
     title = {Quivers of semi-maximal rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {215--223},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a14/}
}
TY  - JOUR
AU  - S. I. Tsupiy
TI  - Quivers of semi-maximal rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 215
EP  - 223
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a14/
LA  - ru
ID  - FPM_2005_11_3_a14
ER  - 
%0 Journal Article
%A S. I. Tsupiy
%T Quivers of semi-maximal rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 215-223
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a14/
%G ru
%F FPM_2005_11_3_a14
S. I. Tsupiy. Quivers of semi-maximal rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 215-223. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a14/

[1] Tsyupii T. I., “Kolchany i indeksy polumaksimalnykh kolets”, Izvestiya Gomelskogo gosudarstvennogo universiteta, 3:6 (2001), 114–123

[2] Gubareni N. M., Kirichenko V. V., Rings and Modules, Chestochowa, 2001 | Zbl