Infinite rank representations of orders in nonsemisimple algebras, and module categories
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 173-187
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a Dedekind domain with quotient field $K$ and let $\Lambda$ be an $R$-order in a finite-dimensional $K$-algebra $A$ such that $A/\operatorname{Rad}A$ is separable. We show that if $A$ is not semisimple, then there exists a maximal $R$-order $\Delta$ in a skew-field such that the category $\Lambda\text{-}\mathbf{Lat}$ of $R$-projective $\Lambda$-modules admits a full module category $\Delta\text{-}\mathbf{Mod}$ as a subfactor.
@article{FPM_2005_11_3_a11,
author = {W. Rump},
title = {Infinite rank representations of orders in nonsemisimple algebras, and module categories},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {173--187},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a11/}
}
TY - JOUR AU - W. Rump TI - Infinite rank representations of orders in nonsemisimple algebras, and module categories JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 173 EP - 187 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a11/ LA - ru ID - FPM_2005_11_3_a11 ER -
W. Rump. Infinite rank representations of orders in nonsemisimple algebras, and module categories. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 173-187. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a11/