@article{FPM_2005_11_3_a11,
author = {W. Rump},
title = {Infinite rank representations of orders in nonsemisimple algebras, and module categories},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {173--187},
year = {2005},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a11/}
}
W. Rump. Infinite rank representations of orders in nonsemisimple algebras, and module categories. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 173-187. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a11/
[1] Fuks L., Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977
[2] Anderson F. W., Fuller K. R., Rings and Categories of Modules, Springer, Berlin, 1974 | MR
[3] Auslander M., Large Modules over Artin Algebras, Algebra, Topology, and Category Theory, A Collection of Papers in Honor of Samuel Eilenberg, Academic Press, London, 1976 | MR
[4] Butler M. C. R., Campbell J. M., Kovács L. G., “On infinite rank integral representations of groups and orders of finite lattice type”, Arch. Math. (to appear)
[5] Crawley-Boevey W., “Infinite-dimensional modules in the representation theory of finite-dimensional algebras. Trondheim lectures (1996)”, Algebras and Modules, I, CMS Conference Proceedings 23, Providence, 1998, 29–54 | MR | Zbl
[6] Curtis C. W., Reiner I., Methods of Representation Theory, II, John Wiley and Sons, New York, 1987 | MR | Zbl
[7] MacLane S., Categories for the Working Mathematician, Springer, New York, 1971 | MR | Zbl
[8] Reiner I, Maximal Orders, London Math. Society Monographs. New series, 28, Oxford University Press, Oxford, 2003 | MR | Zbl
[9] Ringel C. M., “Infinite length modules. Some examples as introduction”, Infinite Length Modules, eds. H. Krause, C. M. Ringel, Birkhäuser, 2000, 1–73 | MR | Zbl
[10] Rump W., Almost Fully Decomposable Infinite Rank Lattices over Orders, Preprint, 2004 | MR
[11] Rump W., “Large indecomposables over representation-infinite orders and algebras”, Arch. Math. (to appear)
[12] Rump W., “Large lattices over orders”, Proc. London Math. Soc. (to appear) | DOI