Groups of order 24 and their endomorphism semigroups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 155-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that among the finite groups of order 24 only the binary tetrahedral group is not determined by its endomorphism semigroup in the class of all groups.
@article{FPM_2005_11_3_a10,
     author = {P. Puusemp},
     title = {Groups of order 24 and their endomorphism semigroups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {155--172},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a10/}
}
TY  - JOUR
AU  - P. Puusemp
TI  - Groups of order 24 and their endomorphism semigroups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 155
EP  - 172
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a10/
LA  - ru
ID  - FPM_2005_11_3_a10
ER  - 
%0 Journal Article
%A P. Puusemp
%T Groups of order 24 and their endomorphism semigroups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 155-172
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a10/
%G ru
%F FPM_2005_11_3_a10
P. Puusemp. Groups of order 24 and their endomorphism semigroups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 155-172. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a10/

[1] Puusemp P., “Idempotenty polugrupp endomorfizmov grupp”, Uchenye zapiski Tartuskogo un-ta, 366, 1975, 76–104 | MR

[2] Puusemp P., “Polugruppy endomorfizmov obobschennykh grupp kvaternionov”, Uchenye zapiski Tartuskogo un-ta, 390, 1976, 84–103 | MR

[3] Puusemp P., “O polugruppakh endomorfizmov simmetricheskikh grupp”, Uchenye zapiski Tartuskogo un-ta, 700, 1985, 42–49 | MR | Zbl

[4] Alperin J. L., “Groups with finitely many automorphisms”, Pacific J. Math., 12:1 (1962), 1–5 | MR | Zbl

[5] Corner A. L. S., “Every countable reduced torsion-free ring is an endomorphism ring”, Proc. London Math. Soc., 13:52 (1963), 687–710 | DOI | MR | Zbl

[6] Coxeter H. S. M., Moser W. O. J., Generators and Relations for Discrete Groups, Springer, 1972 | MR | Zbl

[7] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., “Properties of endomorphism rings of Abelian groups, I”, J. Math. Sci., 112:6 (2002), 4598–4735 | DOI | MR | Zbl

[8] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., “Properties of endomorphism rings of Abelian groups, II”, J. Math. Sci., 113:1 (2003), 1–174 | DOI | MR | Zbl

[9] Puusemp P., “On the torsion subgroups and endomorphism semigroups of Abelian groups”, Algebras Groups Geom., 14 (1997), 407–422 | MR | Zbl

[10] Puusemp P., “A characterization of divisible and torsion Abelian groups by their endomorphism semigroups”, Algebras Groups Geom., 16 (1999), 183–193 | MR | Zbl

[11] Puusemp P., “On endomorphism semigroups of dihedral $2$-groups and alternating group $A_{4}$”, Algebras Groups Geom., 16 (1999), 487–500 | MR | Zbl

[12] Puusemp P., “Characterization of a semidirect product of cyclic groups by its endomorphism semigroup”, Algebras Groups Geom., 17 (2000), 479–498 | MR | Zbl

[13] Puusemp P., “Characterization of a semidirect product of groups by its endomorphism semigroup”, Semigroups, Proceedings of the International Conference (Braga, Portugal, June 18–23, 1999), eds. Smith, Paula et al., World Scientific, Singapore, 2000, 161–170 | MR | Zbl

[14] Puusemp P., “On the definability of a semidirect product of cyclic groups by its endomorphism semigroup”, Algebras Groups Geom., 19 (2002), 195–212 | MR | Zbl