Groups of order 24 and their endomorphism semigroups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 155-172
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that among the finite groups of order 24 only the binary tetrahedral group is not determined by its endomorphism semigroup in the class of all groups.
@article{FPM_2005_11_3_a10,
     author = {P. Puusemp},
     title = {Groups of order 24 and their endomorphism semigroups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {155--172},
     year = {2005},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a10/}
}
TY  - JOUR
AU  - P. Puusemp
TI  - Groups of order 24 and their endomorphism semigroups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 155
EP  - 172
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a10/
LA  - ru
ID  - FPM_2005_11_3_a10
ER  - 
%0 Journal Article
%A P. Puusemp
%T Groups of order 24 and their endomorphism semigroups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 155-172
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a10/
%G ru
%F FPM_2005_11_3_a10
P. Puusemp. Groups of order 24 and their endomorphism semigroups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 155-172. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a10/

[1] Puusemp P., “Idempotenty polugrupp endomorfizmov grupp”, Uchenye zapiski Tartuskogo un-ta, 366, 1975, 76–104 | MR

[2] Puusemp P., “Polugruppy endomorfizmov obobschennykh grupp kvaternionov”, Uchenye zapiski Tartuskogo un-ta, 390, 1976, 84–103 | MR

[3] Puusemp P., “O polugruppakh endomorfizmov simmetricheskikh grupp”, Uchenye zapiski Tartuskogo un-ta, 700, 1985, 42–49 | MR | Zbl

[4] Alperin J. L., “Groups with finitely many automorphisms”, Pacific J. Math., 12:1 (1962), 1–5 | MR | Zbl

[5] Corner A. L. S., “Every countable reduced torsion-free ring is an endomorphism ring”, Proc. London Math. Soc., 13:52 (1963), 687–710 | DOI | MR | Zbl

[6] Coxeter H. S. M., Moser W. O. J., Generators and Relations for Discrete Groups, Springer, 1972 | MR | Zbl

[7] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., “Properties of endomorphism rings of Abelian groups, I”, J. Math. Sci., 112:6 (2002), 4598–4735 | DOI | MR | Zbl

[8] Krylov P. A., Mikhalev A. V., Tuganbaev A. A., “Properties of endomorphism rings of Abelian groups, II”, J. Math. Sci., 113:1 (2003), 1–174 | DOI | MR | Zbl

[9] Puusemp P., “On the torsion subgroups and endomorphism semigroups of Abelian groups”, Algebras Groups Geom., 14 (1997), 407–422 | MR | Zbl

[10] Puusemp P., “A characterization of divisible and torsion Abelian groups by their endomorphism semigroups”, Algebras Groups Geom., 16 (1999), 183–193 | MR | Zbl

[11] Puusemp P., “On endomorphism semigroups of dihedral $2$-groups and alternating group $A_{4}$”, Algebras Groups Geom., 16 (1999), 487–500 | MR | Zbl

[12] Puusemp P., “Characterization of a semidirect product of cyclic groups by its endomorphism semigroup”, Algebras Groups Geom., 17 (2000), 479–498 | MR | Zbl

[13] Puusemp P., “Characterization of a semidirect product of groups by its endomorphism semigroup”, Semigroups, Proceedings of the International Conference (Braga, Portugal, June 18–23, 1999), eds. Smith, Paula et al., World Scientific, Singapore, 2000, 161–170 | MR | Zbl

[14] Puusemp P., “On the definability of a semidirect product of cyclic groups by its endomorphism semigroup”, Algebras Groups Geom., 19 (2002), 195–212 | MR | Zbl