Group algebras in which complements are summands
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 3-11
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that (1) every almost selfinjective group algebra is selfinjective and (2) if the group algebra $KG$ is continuous, then $G$ is a locally finite group. Furthermore, it follows that the following assertions are equivalent: a CS group algebra $KG$ is continuous; $KG$ is principally selfinjective; the group $G$ is locally finite.
@article{FPM_2005_11_3_a0,
author = {A. N. Alahmadi and S. K. Jain and P. Kanwar and J. B. Srivastava},
title = {Group algebras in which complements are summands},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {3--11},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a0/}
}
TY - JOUR AU - A. N. Alahmadi AU - S. K. Jain AU - P. Kanwar AU - J. B. Srivastava TI - Group algebras in which complements are summands JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2005 SP - 3 EP - 11 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a0/ LA - ru ID - FPM_2005_11_3_a0 ER -
A. N. Alahmadi; S. K. Jain; P. Kanwar; J. B. Srivastava. Group algebras in which complements are summands. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a0/