Group algebras in which complements are summands
Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that (1) every almost selfinjective group algebra is selfinjective and (2) if the group algebra $KG$ is continuous, then $G$ is a locally finite group. Furthermore, it follows that the following assertions are equivalent: a CS group algebra $KG$ is continuous; $KG$ is principally selfinjective; the group $G$ is locally finite.
@article{FPM_2005_11_3_a0,
     author = {A. N. Alahmadi and S. K. Jain and P. Kanwar and J. B. Srivastava},
     title = {Group algebras in which complements are summands},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a0/}
}
TY  - JOUR
AU  - A. N. Alahmadi
AU  - S. K. Jain
AU  - P. Kanwar
AU  - J. B. Srivastava
TI  - Group algebras in which complements are summands
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2005
SP  - 3
EP  - 11
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a0/
LA  - ru
ID  - FPM_2005_11_3_a0
ER  - 
%0 Journal Article
%A A. N. Alahmadi
%A S. K. Jain
%A P. Kanwar
%A J. B. Srivastava
%T Group algebras in which complements are summands
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2005
%P 3-11
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a0/
%G ru
%F FPM_2005_11_3_a0
A. N. Alahmadi; S. K. Jain; P. Kanwar; J. B. Srivastava. Group algebras in which complements are summands. Fundamentalʹnaâ i prikladnaâ matematika, Tome 11 (2005) no. 3, pp. 3-11. http://geodesic.mathdoc.fr/item/FPM_2005_11_3_a0/

[1] Alahmadi A. N., Jain S. K., Srivastava J. B., Semiprime CS group algebra of polycyclic-by-finite group without domains as summands is hereditary, Preprint | MR

[2] Behn A., “Polycyclic group rings whose principal ideals are projective”, J. Algebra, 232 (2000), 697–707 | DOI | MR | Zbl

[3] Beidar K. I., Jain S. K., Kanwar P., Srivastava J. B., “CS matrix rings over local rings”, J. Algebra, 264:1 (2003), 251–261 | DOI | MR | Zbl

[4] Birkenmeier G. F., Kim J. Y., Park J. K., “A counterexample for CS rings”, Glasgow Math. J., 42:2 (2000), 263–269 | DOI | MR | Zbl

[5] Chatters A. W., Hajarnavis C. R., “Rings in which every complement right ideal is a direct summand”, Quart. J. Math., 28 (1977), 61–80 | DOI | MR | Zbl

[6] Nguyen Viet Dung, Dinh Van Huynh, Smith P. F., Wisbauer R., Extending Modules, Pitman, London, 1994 | Zbl

[7] Farkas D. R., “A note on locally finite group algebras”, Proc. Amer. Math. Soc., 48:1 (1975), 26–28 | DOI | MR | Zbl

[8] J. L. Gómez Pardo, P. A. Guil Asensio, “Every $\sum$-CS-module has an indecomposable decomposition”, Proc. Amer. Math. Soc., 129 (2001), 947–954 | DOI | MR

[9] Dinh Van Huynh, Jain S. K., López-Permouth S. R., “On the symmetry of Goldie and CS conditions over prime rings”, Proc. Amer. Math. Soc., 128 (2000), 3153–3157 | DOI | MR | Zbl

[10] Jain S. K., Kanwar P., López-Permouth S. R., “Nonsingular semiperfect CS rings, II”, Bull. London Math. Soc., 32 (2000), 421–431 | DOI | MR | Zbl

[11] Jain S. K., Kanwar P., Malik S., Srivastava J. B., “$KD_{\infty }$ is a CS algebra”, Proc. Amer. Math. Soc., 128:2 (2000), 397–400 | DOI | MR | Zbl

[12] Jain S. K., Kanwar P., Srivastava J. B., “Survey of some recent results on CS group algebras and open questions”, Advances in Algebra, Proceedings ICM Satellite Conference in Algebra and Related Topics, World Scientific, 2002 | MR

[13] Mohamed S., Müller B. J., Continuous and Discrete Modules, Cambridge University Press, 1990 | MR

[14] Passman D. S., The Algebraic Structure of Group Rings, John Wiley, New York, 1977 | MR | Zbl

[15] Utumi Y., “On continuous and self-injective rings”, Trans. Amer. Math. Soc., 118 (1965), 158–173 | DOI | MR | Zbl